cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A350729 Array read by antidiagonals: T(m,n) is the number of (undirected) Hamiltonian paths in the m X n king graph.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 48, 48, 1, 1, 208, 392, 208, 1, 1, 768, 4678, 4678, 768, 1, 1, 2752, 43676, 171592, 43676, 2752, 1, 1, 9472, 406396, 4743130, 4743130, 406396, 9472, 1, 1, 32000, 3568906, 132202038, 364618672, 132202038, 3568906, 32000, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 16 2022

Keywords

Examples

			Array begins:
===========================================================
m\n | 1    2      3         4           5             6 ...
----+------------------------------------------------------
  1 | 1    1      1         1           1             1 ...
  2 | 1   12     48       208         768          2752 ...
  3 | 1   48    392      4678       43676        406396 ...
  4 | 1  208   4678    171592     4743130     132202038 ...
  5 | 1  768  43676   4743130   364618672   28808442502 ...
  6 | 1 2752 406396 132202038 28808442502 6544911081900 ...
     ...
		

Crossrefs

Main diagonal is A308129.

Formula

T(m,n) = T(n,m).

A339750 Number of (undirected) paths in the 2 X n king graph.

Original entry on oeis.org

1, 30, 235, 1448, 7909, 40674, 202719, 994268, 4837337, 23441366, 113377235, 547864528, 2646278093, 12779454410, 61709221831, 297968336836, 1438739595201, 6946894643134, 33542671171515, 161958548471736, 782005482553269, 3775857399168946, 18231454211243951, 88029252078796716
Offset: 1

Views

Author

Seiichi Manyama, Dec 15 2020

Keywords

Crossrefs

Row 2 of A307026.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A(start, goal, n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal)
        return paths.len()
    def A307026(n, k):
        m = k * n
        s = 0
        for i in range(1, m):
            for j in range(i + 1, m + 1):
                s += A(i, j, n, k)
        return s
    def A339750(n):
        return A307026(n, 2)
    print([A339750(n) for n in range(1, 21)])

Formula

Empirical g.f.: x*(16*x^4 - 48*x^3 + 32*x^2 - 20*x - 1) / ((x-1)^2 * (2*x - 1)^2 * (4*x^2 + 4*x - 1)). - Vaclav Kotesovec, Dec 16 2020

A339751 Number of (undirected) paths in the 3 X n king graph.

Original entry on oeis.org

3, 235, 5148, 96956, 1622015, 25281625, 375341540, 5384233910, 75321922433, 1034169469257, 13999362291892, 187462552894846, 2489361245031701, 32843155609675341, 431132757745615932, 5637280548371484492, 73484574453020315121, 955615821857238062353, 12403944194214668554202
Offset: 1

Views

Author

Seiichi Manyama, Dec 15 2020

Keywords

Crossrefs

Row 3 of A307026.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A(start, goal, n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal)
        return paths.len()
    def A307026(n, k):
        m = k * n
        s = 0
        for i in range(1, m):
            for j in range(i + 1, m + 1):
                s += A(i, j, n, k)
        return s
    def A339751(n):
        return A307026(n, 3)
    print([A339751(n) for n in range(1, 21)])

Formula

Empirical g.f.: x*(3 + 142*x - 1234*x^2 + 6033*x^3 - 4437*x^4 + 1913*x^5 - 647*x^6 + 24874*x^7 + 25724*x^8 + 1737*x^9 + 10969*x^10 + 22767*x^11 + 24670*x^12 + 12330*x^13 + 1616*x^14 + 240*x^15 + 1008*x^16) / ((1 - x)^2 * (-1 + 8*x + 14*x^2 + 5*x^3 + 6*x^4)^2*(1 - 13*x - 2*x^2 + 45*x^3 - 24*x^4 - 22*x^5 + 9*x^6 + 8*x^7 - 6*x^8)). - Vaclav Kotesovec, Dec 16 2020

A358665 Number of (undirected) paths in the 7 X n king graph.

Original entry on oeis.org

21, 202719, 375341540, 834776217484, 1482823362091281, 2480146959625512771, 3954100866385811897908, 6098277513580967335984126, 9152733286084921835343938561, 13441847550989968623927296910019, 19393111514791549266474890223886106, 27568262002518118100083519899700564808
Offset: 1

Views

Author

Seiichi Manyama, Dec 12 2022

Keywords

Crossrefs

Row 7 of A307026.

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jan 28 2023

A358626 Number of (undirected) paths in the 4 X n king graph.

Original entry on oeis.org

6, 1448, 96956, 6014812, 329967798, 16997993692, 834776217484, 39563650279918, 1823748204789500, 82228567227405462, 3641260776226602674, 158852482151721371580, 6843583319011989465314, 291698433877308327463184
Offset: 1

Views

Author

Seiichi Manyama, Dec 06 2022

Keywords

Crossrefs

A358920 Number of (undirected) paths in the 5 X n king graph.

Original entry on oeis.org

10, 7909, 1622015, 329967798, 57533191444, 9454839968415, 1482823362091281, 224616420155224372, 33098477832558055458, 4770920988514661692889, 675419680016870426617489, 94197848411355615226343472
Offset: 1

Views

Author

Seiichi Manyama, Dec 06 2022

Keywords

Crossrefs

A358676 Number of (undirected) paths in the 6 X n king graph.

Original entry on oeis.org

15, 40674, 25281625, 16997993692, 9454839968415, 4956907379126694, 2480146959625512771, 1199741105997010103190, 564696981034110130721083, 260043412621117997164783364, 117628771690070383600923005043, 52423243374584008151179491288866
Offset: 1

Views

Author

Seiichi Manyama, Dec 12 2022

Keywords

Crossrefs

Row 6 of A307026.

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 28 2023
Showing 1-7 of 7 results.