A350729 Array read by antidiagonals: T(m,n) is the number of (undirected) Hamiltonian paths in the m X n king graph.
1, 1, 1, 1, 12, 1, 1, 48, 48, 1, 1, 208, 392, 208, 1, 1, 768, 4678, 4678, 768, 1, 1, 2752, 43676, 171592, 43676, 2752, 1, 1, 9472, 406396, 4743130, 4743130, 406396, 9472, 1, 1, 32000, 3568906, 132202038, 364618672, 132202038, 3568906, 32000, 1
Offset: 1
Examples
Array begins: =========================================================== m\n | 1 2 3 4 5 6 ... ----+------------------------------------------------------ 1 | 1 1 1 1 1 1 ... 2 | 1 12 48 208 768 2752 ... 3 | 1 48 392 4678 43676 406396 ... 4 | 1 208 4678 171592 4743130 132202038 ... 5 | 1 768 43676 4743130 364618672 28808442502 ... 6 | 1 2752 406396 132202038 28808442502 6544911081900 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..231
- Eric Weisstein's World of Mathematics, Hamiltonian Path
- Eric Weisstein's World of Mathematics, King Graph
Crossrefs
Formula
T(m,n) = T(n,m).