cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307800 Binomial transform of least common multiple sequence (A003418), starting with a(1).

Original entry on oeis.org

1, 3, 11, 37, 153, 551, 2023, 7701, 29417, 107083, 384771, 1408133, 5457961, 22466367, 92977823, 365613181, 1342359393, 4677908531, 16159185307, 58676063493, 231520762361, 967464685783, 4052593703511, 16354948948517, 62709285045913, 229276436653851
Offset: 0

Views

Author

Sarah Arpin, Apr 29 2019

Keywords

Examples

			For n = 3, a(3) = binomial(3,0)*1 + binomial(3,1)*2 + binomial(3,2)*6 + binomial(3,3)*12 = 37.
		

Crossrefs

Binomial transform of A003418 (shifted).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:
    a:= n-> add(b(i+1)*binomial(n, i), i=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 29 2019
  • Mathematica
    Table[Sum[Binomial[n, k]*Apply[LCM, Range[k+1]], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jun 06 2019 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019
  • Sage
    def OEISbinomial_transform(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + ((binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    LCMSeq = []
    for k in range(1,26):
        LCMSeq.append(lcm(range(1,k+1)))
    OEISbinomial_transform(25, LCMSeq)
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*A003418(k+1).
Formula for values modulo 10: (Proof by considering the formula modulo 10)
a(n) (mod 10) = 1, if n = 0, 2 (mod 5),
a(n) (mod 10) = 3, if n = 1, 4 (mod 5),
a(n) (mod 10) = 7, if n = 3 (mod 5).