A307800 Binomial transform of least common multiple sequence (A003418), starting with a(1).
1, 3, 11, 37, 153, 551, 2023, 7701, 29417, 107083, 384771, 1408133, 5457961, 22466367, 92977823, 365613181, 1342359393, 4677908531, 16159185307, 58676063493, 231520762361, 967464685783, 4052593703511, 16354948948517, 62709285045913, 229276436653851
Offset: 0
Keywords
Examples
For n = 3, a(3) = binomial(3,0)*1 + binomial(3,1)*2 + binomial(3,2)*6 + binomial(3,3)*12 = 37.
Links
- Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev Binomial Transforms of Sequences, CU Boulder Experimental Math Lab, Spring 2019.
Crossrefs
Binomial transform of A003418 (shifted).
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end: a:= n-> add(b(i+1)*binomial(n, i), i=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Apr 29 2019
-
Mathematica
Table[Sum[Binomial[n, k]*Apply[LCM, Range[k+1]], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jun 06 2019 *)
-
PARI
a(n) = sum(k=0, n, binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019
-
Sage
def OEISbinomial_transform(N, seq): BT = [seq[0]] k = 1 while k< N: next = 0 j = 0 while j <=k: next = next + ((binomial(k,j))*seq[j]) j = j+1 BT.append(next) k = k+1 return BT LCMSeq = [] for k in range(1,26): LCMSeq.append(lcm(range(1,k+1))) OEISbinomial_transform(25, LCMSeq)
Formula
a(n) = Sum_{k=0..n} binomial(n,k)*A003418(k+1).
Formula for values modulo 10: (Proof by considering the formula modulo 10)
a(n) (mod 10) = 1, if n = 0, 2 (mod 5),
a(n) (mod 10) = 3, if n = 1, 4 (mod 5),
a(n) (mod 10) = 7, if n = 3 (mod 5).