A307841
Minimum number of nontrivial Latin subrectangles in a diagonal Latin square of order n.
Original entry on oeis.org
0, 0, 0, 12, 0, 51, 0, 36
Offset: 1
For example, the square
0 1 2 3 4 5 6
4 2 6 5 0 1 3
3 6 1 0 5 2 4
6 3 5 4 1 0 2
1 5 3 2 6 4 0
5 0 4 6 2 3 1
2 4 0 1 3 6 5
has a nontrivial Latin subrectangle
. . . . . . .
. . 6 5 0 1 3
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . 0 1 3 6 5
The total number of Latin subrectangles for this square is 2119 and the number of nontrivial Latin subrectangles is only 151.
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- E. I. Vatutin, About the minimum and maximum number of nontrivial Latin subrectangles in a diagonal Latin squares of order 8 (in Russian).
- Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer (2020), 127-146.
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
A307839
Minimum number of Latin subrectangles in a diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 137, 336, 884, 1968, 4545
Offset: 1
For example, the square
0 1 2 3 4 5 6
4 2 6 5 0 1 3
3 6 1 0 5 2 4
6 3 5 4 1 0 2
1 5 3 2 6 4 0
5 0 4 6 2 3 1
2 4 0 1 3 6 5
has a Latin subrectangle
. . . . . . .
. . 6 5 0 1 3
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . 0 1 3 6 5
The total number of Latin subrectangles for this square is 2119.
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- E. I. Vatutin, About the minimum and maximum number of Latin subrectangles in a diagonal Latin squares of order 8 (in Russian).
- Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer (2020), 127-146.
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
A307840
Maximum number of Latin subrectangles in a diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 137, 348, 884, 2119, 5433
Offset: 1
For example, the square
0 1 2 3 4 5 6
4 2 6 5 0 1 3
3 6 1 0 5 2 4
6 3 5 4 1 0 2
1 5 3 2 6 4 0
5 0 4 6 2 3 1
2 4 0 1 3 6 5
has a Latin subrectangle
. . . . . . .
. . 6 5 0 1 3
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . 0 1 3 6 5
The total number of Latin subrectangles for this square is 2119.
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- E. I. Vatutin, About the minimum and maximum number of Latin subrectangles in a diagonal Latin squares of order 8 (in Russian).
- Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer (2020), 127-146.
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
Showing 1-3 of 3 results.
Comments