cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307872 Sum of the smallest parts in the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 5, 7, 11, 13, 17, 23, 27, 33, 42, 48, 57, 69, 78, 90, 106, 118, 134, 154, 170, 190, 215, 235, 260, 290, 315, 345, 381, 411, 447, 489, 525, 567, 616, 658, 707, 763, 812, 868, 932, 988, 1052, 1124, 1188, 1260, 1341, 1413, 1494, 1584, 1665
Offset: 1

Views

Author

Wesley Ivan Hurt, May 02 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      1      2      4      5      7     11     13      ...
-----------------------------------------------------------------------
		

Crossrefs

Cf. A069905.

Programs

  • Mathematica
    Table[Sum[Sum[k, {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
    Table[Total[IntegerPartitions[n,{3}][[;;,-1]]],{n,100}] (* Harvey P. Dale, Jan 14 2024 *)
  • PARI
    a(n) = sum(k=1, n\3, sum(i=k, (n-k)\2, k)); \\ Michel Marcus, May 02 2019

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} k.
Conjectures from Colin Barker, May 02 2019: (Start)
G.f.: x^3 / ((1 - x)^4*(1 + x)*(1 + x + x^2)^2).
a(n) = a(n-1) + a(n-2) + a(n-3) - 2*a(n-4) - 2*a(n-5) + a(n-6) + a(n-7) + a(n-8) - a(n-9) for n > 9.
(End)
a(n) = ((-1)^n*(-1+(-1)^r)+2*r*((-1)^(n+r)+(1+r)*(1+2*n-4*r)))/16, where r = floor(n/3). - Wesley Ivan Hurt, Oct 24 2021