cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A356871 Primitive coreful abundant numbers (second definition): coreful abundant numbers (A308053) that are powerful numbers (A001694).

Original entry on oeis.org

72, 108, 144, 200, 216, 288, 324, 400, 432, 576, 648, 784, 800, 864, 900, 972, 1000, 1152, 1296, 1568, 1600, 1728, 1764, 1800, 1936, 1944, 2000, 2304, 2592, 2700, 2704, 2744, 2916, 3136, 3200, 3456, 3528, 3600, 3872, 3888, 4000, 4356, 4500, 4608, 4900, 5000, 5184
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2022

Keywords

Comments

For squarefree numbers k, csigma(k) = k, where csigma(k) is the sum of the coreful divisors of k (A057723). Thus, if m is a term (csigma(m) > 2*m) and k is a squarefree number coprime to k, then csigma(k*m) = csigma(k) * csigma(m) = k * csigma(m) > 2*k*m, so k*m is a coreful abundant number. Therefore, the sequence of coreful abundant numbers (A308053) can be generated from this sequence by multiplying with coprime squarefree numbers. The asymptotic density of the coreful abundant numbers can be calculated from this sequence (see comment in A308053).

Examples

			72 is a term since csigma(72) = 168 > 2 * 72, and 72 = 2^3 * 3^2 is powerful.
		

Crossrefs

Intersection of A001694 and A308053.
A339940 is a subsequence.
Cf. A057723.
Similar sequences: A307959, A328136.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1)-1; s[1] = 1; s[n_] := If[AllTrue[(fct = FactorInteger[n])[[;;, 2]], #>1 &], Times @@ f @@@ fct, 0]; seq={}; Do[If[s[n] > 2*n, AppendTo[seq, n]], {n, 1, 5000}]; seq

A339936 Odd coreful abundant numbers: the odd terms of A308053.

Original entry on oeis.org

99225, 165375, 231525, 297675, 496125, 694575, 826875, 893025, 1091475, 1157625, 1225125, 1289925, 1488375, 1620675, 1686825, 1819125, 1885275, 2083725, 2149875, 2282175, 2480625, 2546775, 2679075, 2811375, 2877525, 3009825, 3075975, 3142125, 3274425, 3472875
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Comments

The asymptotic density of this sequence is Sum_{n>=1} f(A356871(n)) = 9.1348...*10^(-6), where f(n) = (4/(Pi^2*n))*Product_{prime p|n}(p/(p+1)) if n is odd and 0 otherwise. - Amiram Eldar, Sep 02 2022

Examples

			99225 is a term since it is odd and the sum of its coreful divisors is A057723(99225) = 201600 > 2 * 99225.
		

Crossrefs

Intersection of A005408 and A308053.
Subsequence of A321147.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[1, 10^6, 2], s[#] > 2*# &]

A339939 Coreful weird numbers: numbers k that are coreful abundant (A308053) but no subset of their aliquot coreful divisors sums to k.

Original entry on oeis.org

4900, 14700, 53900, 63700, 83300, 93100, 112700, 142100, 151900, 161700, 181300, 191100, 200900, 210700, 230300, 249900, 259700, 279300, 289100, 298900, 328300, 338100, 347900, 349448, 357700, 387100, 406700, 426300, 436100, 455700, 475300, 494900, 504700, 524300
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Comments

First differs from A321146 at n = 24.
A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).

Examples

			4900 is a term since the sum of its aliquot coreful divisors, {70, 140, 350, 490, 700, 980, 2450}, is 5180 > 4900, and no subset of these divisors sums to 4900.
		

Crossrefs

Subsequence of A308053.
Similar sequences: A006037, A064114, A292986, A306984, A321146, A327948.

Programs

  • Mathematica
    corDiv[n_] := Module[{rad = Times @@ FactorInteger [n][[;;,1]]}, rad * Divisors[n/rad]]; corWeirdQ[n_] := Module[{d = Most@corDiv[n], x}, Plus @@ d > n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 0]; Select[Range[10^5], corWeirdQ]

A339982 Coreful abundant numbers (A308053) with an odd sum of coreful divisors.

Original entry on oeis.org

1157625, 10418625, 12733875, 15049125, 19679625, 21994875, 26625375, 28940625, 33571125, 35886375, 40429125, 42832125, 47462625, 49777875, 54408375, 56723625, 61354125, 66733875, 68299875, 70615125, 77560875, 82191375, 84506625, 91452375, 93767625, 96082875
Offset: 1

Views

Author

Amiram Eldar, Dec 25 2020

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).
All the terms are odd numbers since the sum of coreful divisors (A057723) of an even number is even.
All the terms are exponentially odd numbers (A268335) since the sum of coreful divisors function is multiplicative and A057723(p^e) = p + p^2 + ... + p^e is even for a prime p and an even exponent e.
None of the terms are coreful Zumkeller numbers (A339979).

Examples

			1157625 is a term since A057723(1157625) = 2411955 > 2*1157625 and it is odd.
		

Crossrefs

Intersection of A268335 and A339936.
Subsequence of A308053.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[1, 2*10^7, 2], (sum = s[#]) > 2*# && OddQ[sum] &]

A339937 Numbers k such that k and k+1 are both coreful abundant numbers (A308053).

Original entry on oeis.org

2282175, 33350624, 46734975, 86424975, 87152624, 105674624, 126114975, 169707824, 179762624, 214491375, 221370975, 235857824, 266022224, 270586575, 278524575, 297774224, 360021375, 372683024, 380858624, 395715375, 425840624, 470624175, 489873824, 503963775
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Examples

			2282175 is a term since 2282175 and 2282176 are both coreful abundant numbers.
		

Crossrefs

Subsequence of A308053.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); abQ[n_] := s[n] > 2*n; q1 = False; seq = {}; Do[q2 = abQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 10^8}]; seq

A308054 The number of coreful abundant numbers (A308053) below 10^n.

Original entry on oeis.org

0, 1, 24, 259, 2614, 26222, 262220, 2622178, 26221610, 262215860, 2622158194
Offset: 1

Views

Author

Amiram Eldar, May 10 2019

Keywords

Examples

			Below 10^2 there is only one coreful abundant number, 72, hence a(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1)-1; csigma[1]=1; csigma[n_] := Times @@ (f @@@ FactorInteger[n]); cpQ[n_] := csigma[n] > 2*n; s={0}; c=0; p=100; Do[If[k==p, AppendTo[s, c]; p*=10]; If[cpQ[k], c++], {k, 1, 1000001}]; s

Formula

a(n) ~ c * 10^n, where c = 0.0262215... is the asymptotic density of the coreful abundant numbers (see A308053). [Updated by Amiram Eldar, Sep 02 2022]

Extensions

a(11) from Amiram Eldar, Sep 02 2022

A339983 Coreful abundant numbers (A308053) with an even sum of coreful divisors (A057723) that are not coreful Zumkeller numbers (A339979).

Original entry on oeis.org

108, 216, 432, 540, 756, 864, 972, 1000, 1080, 1188, 1404, 1512, 1728, 1836, 1944, 2000, 2052, 2160, 2376, 2484, 2744, 2808, 3000, 3024, 3132, 3348, 3456, 3672, 3780, 3888, 3996, 4000, 4104, 4320, 4428, 4644, 4752, 4860, 4968, 5076, 5488, 5616, 5724, 5940, 6000
Offset: 1

Views

Author

Amiram Eldar, Dec 25 2020

Keywords

Examples

			108 is a term since its set of coreful divisors, {6, 12, 18, 36, 54, 108}, has an even sum, 234 > 2*108, and it cannot be partitioned into two disjoint sets of equal sum.
		

Crossrefs

Subsequence of A308053.
Similar sequences: A171641, A323341, A323342, A323343, A323344.

Programs

  • Mathematica
    q[n_] := Module[{r = Times @@ FactorInteger[n][[;; , 1]], d, sum, x}, d = r*Divisors[n/r]; (sum = Plus @@ d) >= 2*n && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 0]; Select[Range[10^4], q]

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

Original entry on oeis.org

1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - Amiram Eldar, May 06 2025

Crossrefs

Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.

Programs

  • Mathematica
    psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A323332(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        a = primefactors(m:=bisection(f,n,n))
        return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024

A340109 Coreful 3-abundant numbers: numbers k such that csigma(k) > 3*k, where csigma(k) is the sum of the coreful divisors of k (A057723).

Original entry on oeis.org

5400, 7200, 10800, 14400, 16200, 18000, 21168, 21600, 27000, 28800, 32400, 36000, 37800, 42336, 43200, 48600, 50400, 54000, 56448, 57600, 59400, 63504, 64800, 70200, 72000, 75600, 79200, 81000, 84672, 86400, 88200, 90000, 91800, 93600, 97200, 98784, 100800, 102600
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2020

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).
Analogous to A068403 as A308053 is analogous to A005101.
Apparently, the least odd term in this sequence is 3^4 * 5^3 * 7^3 * 11^2 * 13^2 * 17^2 * 19^2 * 23^2 * 29^2 = 3296233276111741840875.
The asymptotic density of this sequence is Sum_{n>=1} f(A364991(n)) = 0.0004006..., where f(n) = (6/(Pi^2*n)) * Product_{prime p|n} (p/(p+1)). - Amiram Eldar, Aug 15 2023

Examples

			5400 is a term since csigma(5400) = 16380 > 3 * 5400.
		

Crossrefs

Subsequence of A308053.
Cf. A007947, A057723, A364991 (primitive terms).
Similar sequences: A068403, A285615, A293187, A300664, A307112, A328135.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], s[#] > 3*# &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, sigma(f[i, 1]^f[i, 2]) - 1);}
    is(n) = s(n) > 3*n; \\ Amiram Eldar, Aug 15 2023

A339940 Primitive coreful abundant numbers: coreful abundant numbers having no coreful abundant aliquot divisor.

Original entry on oeis.org

72, 108, 200, 784, 900, 1764, 1936, 2704, 2744, 4356, 4900, 6084, 9248, 10404, 11552, 12996, 16928, 19044, 26912, 30276, 34596, 47432, 49284, 60500, 60516, 61504, 66248, 66564, 79524, 84500, 87616, 99225, 101124, 107584, 113288, 118336, 125316, 133956, 141376
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Comments

Analogous to A091191 as A057723 is analogous to A000203.
All the coreful abundant numbers (A308053) are multiples of terms of this sequence.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); cabQ[n_] := s[n] > 2*n; pricabQ[n_] := cabQ[n] && AllTrue[Most @ Divisors[n], !cabQ[#] &]; Select[Range[10^5], pricabQ]
Showing 1-10 of 14 results. Next