cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A336566 a(n) = gcd(A336563(n), A336564(n)) = gcd(A057723(n)-n, n-A308135(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 3, 18, 2, 10, 8, 22, 6, 1, 10, 2, 14, 28, 12, 30, 1, 18, 14, 22, 1, 36, 16, 22, 10, 40, 12, 42, 2, 3, 20, 46, 14, 1, 1, 30, 2, 52, 12, 38, 2, 34, 26, 58, 6, 60, 28, 1, 1, 46, 12, 66, 2, 42, 4, 70, 3, 72, 34, 1, 2, 58, 12, 78, 2, 1, 38, 82, 14, 62, 40, 54, 2, 88
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Differs from A326144 at the positions given by A336555, for the first time at n=45, where a(45) = 3, while A326144(45) = 6.

Programs

Formula

a(n) = gcd(A336563(n), A336564(n)) = gcd(A057723(n)-n, n-A308135(n));

A336564 a(n) = n - A308135(n), where A308135(n) is the sum of non-coreful divisors of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 0, 6, 7, 8, 2, 10, 2, 12, 4, 6, 15, 16, 3, 18, 8, 10, 8, 22, 6, 24, 10, 26, 14, 28, -12, 30, 31, 18, 14, 22, 17, 36, 16, 22, 20, 40, -12, 42, 26, 27, 20, 46, 14, 48, 17, 30, 32, 52, 12, 38, 34, 34, 26, 58, -18, 60, 28, 43, 63, 46, -12, 66, 44, 42, -4, 70, 45, 72, 34, 41, 50, 58, -12, 78, 44, 80, 38, 82, -14, 62
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; a[1] = 1; a[n_] := n - Times @@ f @@@ (fct = FactorInteger[n]) + Times @@ fc @@@ fct; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
    A308135(n) = (sigma(n)-A057723(n));
    A336564(n) = (n - A308135(n));

Formula

a(n) = n - A308135(n) = n - (sigma(n) - A057723(n)).
a(n) = A336563(n) + A033879(n). [Corrected by Georg Fischer, Dec 13 2022]
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065487 - A013661 + 1 = 0.586357... . - Amiram Eldar, Dec 08 2023

A308127 Non-coreful abundant numbers: numbers k such that ncsigma(k) > k, where ncsigma(k) is the sum of the non-coreful divisors of k (A308135).

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 114, 120, 126, 132, 138, 150, 156, 168, 174, 180, 186, 198, 210, 222, 240, 246, 258, 270, 282, 294, 300, 318, 330, 336, 354, 366, 378, 390, 402, 420, 426, 438, 450, 462, 474, 480, 498, 510, 534, 546, 570, 582, 606, 618, 630
Offset: 1

Views

Author

Amiram Eldar and Paolo P. Lava, May 14 2019

Keywords

Comments

Non-coreful divisor d of a number k is a divisor such that rad(d) != rad(k), where rad(k) is the largest squarefree divisor of k (A007947).

Examples

			60 is in the sequence since its non-coreful divisors are 1, 2, 3, 4, 5, 6, 10, 12, 15, and 20 whose sum is 78 > 60.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(k) local a,n; a:=mul(n,n=factorset(k));
    if sigma(k)-a*sigma(k/a)>k then k; fi;  end: seq(P(i),i=1..630);
  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; ncAbQ[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (fc @@@ FactorInteger[n]) > n; Select[Range[2, 1000], ncAbQ]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    s(n) = my(r=rad(n)); sumdiv(n, d, if (rad(d)!=r, d));
    isok(n) = s(n) > n; \\ Michel Marcus, May 14 2019

A336565 Numbers k for which (A057723(k)-k) is equal to gcd(k-A308135(k), A057723(k)-k).

Original entry on oeis.org

6, 28, 234, 496, 588, 600, 1521, 1638, 6552, 8128, 55860, 89376, 33550336, 168836850
Offset: 1

Views

Author

Antti Karttunen, Jul 26 2020

Keywords

Comments

Numbers k for which A336563(k) = A336566(n) [= gcd(A336563(n), A336564(n))].
Numbers k such that either both A336563(k) and A336564(k) are zero (in which case k is squarefree), or A336563(k) divides A336564(k), in which case k is not squarefree.
Also numbers k for which A336647(n) = 2*n - A057723(n).
Question: Are there any other odd terms apart from 1521 = 39^2 ?

Crossrefs

Cf. A000396 (a subsequence).
Cf. also A326145.

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
    isA336565(n) = { my(b=A057723(n), c=(sigma(n)-b), d=(b-n)); (gcd(d,(n-c))==d); };

A336647 a(n) = n - A336566(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 8, 8, 1, 10, 1, 10, 9, 15, 1, 15, 1, 18, 11, 14, 1, 18, 24, 16, 25, 14, 1, 18, 1, 31, 15, 20, 13, 35, 1, 22, 17, 30, 1, 30, 1, 42, 42, 26, 1, 34, 48, 49, 21, 50, 1, 42, 17, 54, 23, 32, 1, 54, 1, 34, 62, 63, 19, 54, 1, 66, 27, 66, 1, 69, 1, 40, 74, 74, 19, 66, 1, 78, 80, 44, 1, 70, 23, 46, 33, 86
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Comments

Some terms, for example a(600) and a(6552), are negative. - Georg Fischer, Jul 31 2020

Crossrefs

Cf. A336555 (positions where differs from A336646).
Cf. A336565 (positions where a(n) = 2*n - A057723(n) = n - A336563(n)).
Cf. also A336645.

Programs

Formula

a(n) = n - A336566(n).

A339938 Odd non-coreful abundant numbers: the odd terms of A308127.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 75075, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 105105
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Comments

First differs from A112643, A129485 and A249263 at n = 28.

Examples

			15015 is a term since it is odd and the sum of its non-coreful divisors is A308135(15015) = 17241 > 15015.
		

Crossrefs

Intersection of A005408 and A308127.
Cf. A308135.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; s[1] = 0; s[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (fc @@@ FactorInteger[n]); Select[Range[1, 10^5, 2], s[#] > # &]

A378689 a(n) = product of divisors d of n that are not coreful.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 24, 1, 14, 15, 1, 1, 54, 1, 40, 21, 22, 1, 192, 1, 26, 1, 56, 1, 27000, 1, 1, 33, 34, 35, 216, 1, 38, 39, 320, 1, 74088, 1, 88, 135, 46, 1, 3072, 1, 250, 51, 104, 1, 1458, 55, 448, 57, 58, 1, 25920000, 1, 62, 189, 1, 65, 287496
Offset: 1

Views

Author

Michael De Vlieger, Feb 05 2025

Keywords

Examples

			Table of n, a(n), and divisors that are not coreful that produce a(n) for select n:
   n     a(n)
  -----------------------------
   1       1   (empty product)
   2       1 = 1
   3       1 = 1
   4       1 = 1
   5       1 = 1
   6       6 = 1*2*3
  10      10 = 1*2*5
  12      24 = 1*2*3*4
  14      14 = 1*2*7
  15      15 = 1*3*5
  18      54 = 1*2*3*9
  20      40 = 1*2*4*5
  21      21 = 1*3*7
  22      22 = 1*2*11
  24     192 = 1*2*3*4*8
  30   27000 = 1*2*3*5*6*10*15
  36     216 = 1*2*3*4*9
		

Crossrefs

Cf. A007955, A027750, A308135 (sums), A308360 (product of coreful divisors of n).

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Times @@ Select[Divisors[n], rad[#] != r &], {n, 120}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = my(d=divisors(n), c=rad(n), p=1); for (i=1, #d~, if (rad(d[i]) != c, p *= d[i])); p; \\ Michel Marcus, Feb 07 2025

Formula

a(n) = A007955(n) / A308360(n).
a(n) = 1 for powers of primes n (i.e., n in A000961), since d | n such that d > 1 are coreful.
Showing 1-7 of 7 results.