A308217 a(n) is the multiplicative inverse of A001844(n) modulo A001844(n+1); where A001844 is the sequence of centered square numbers.
1, 8, 2, 23, 3, 46, 4, 77, 5, 116, 6, 163, 7, 218, 8, 281, 9, 352, 10, 431, 11, 518, 12, 613, 13, 716, 14, 827, 15, 946, 16, 1073, 17, 1208, 18, 1351, 19, 1502, 20, 1661, 21, 1828, 22, 2003, 23, 2186, 24, 2377, 25, 2576, 26, 2783, 27, 2998, 28, 3221, 29, 3452
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Daniel Hoyt, Graph of A308215 and A308217 in relation to A001844
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Maple
A001844:= n -> 2*n*(n+1)+1: seq(1/A001844(n) mod A001844(n+1),n=0..100); # Robert Israel, Aug 11 2019
-
Mathematica
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 8, 2, 23, 3, 46}, 30] (* Georg Fischer, Dec 06 2024 *)
-
PARI
f(n) = 2*n*(n+1)+1; \\ A001844 a(n) = lift(1/Mod(f(n), f(n+1))); \\ Michel Marcus, May 16 2019
Formula
a(n) satisfies a(n)*(2*n*(n-1)+1) == 1 (mod 2*n*(n+1)+1).
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: (1 + 8*x - x^2 - x^3 + x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
a(n) = (9 - 5*(-1)^n + (8-6*(-1)^n)*n - 2*(-1+(-1)^n)*n^2) / 4. (End)
From Robert Israel, Aug 11 2019: (Start)
a(n) = 1 + n/2 if n is even, since 0 < 1+n/2 < A001844(n+1) and (1+n/2)*A001844(n)-1 = (n/2)*A001844(n+1).
a(n) = n^2 + 7/2*(n+1) if n is odd, since 0 < n^2+7/2*(n+1) < A001844(n+1) and (n^2+7/2*(n+1))*A001844(n)-1 = (n^2+3*k/2+1/2)*A001844(n+1).
Colin Barker's conjectures easily follow. (End)
E.g.f.: ((2 + 9*x)*cosh(x) + (7 + x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Dec 06 2024
Comments