cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A308760 Sum of the largest parts of the partitions of n into 4 parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 5, 9, 17, 25, 41, 57, 84, 112, 154, 197, 262, 325, 414, 506, 629, 751, 915, 1078, 1289, 1501, 1767, 2034, 2370, 2701, 3108, 3519, 4014, 4506, 5100, 5691, 6393, 7095, 7917, 8739, 9703, 10658, 11765, 12876, 14150, 15418, 16874, 18324, 19974
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 22 2019

Keywords

Examples

			Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
                                                         1+1+1+9
                                                         1+1+2+8
                                                         1+1+3+7
                                                         1+1+4+6
                                             1+1+1+8     1+1+5+5
                                             1+1+2+7     1+2+2+7
                                 1+1+1+7     1+1+3+6     1+2+3+6
                                 1+1+2+6     1+1+4+5     1+2+4+5
                                 1+1+3+5     1+2+2+6     1+3+3+5
                     1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
         1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
         1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
         1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
         1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
         2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
--------------------------------------------------------------------------
  n  |      8           9          10          11          12        ...
--------------------------------------------------------------------------
a(n) |     17          25          41          57          84        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 07 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[n - i - j - k, {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (n-i-j-k).
a(n) = A308775(n) - A308733(n) - A308758(n) - A308759(n).
Conjectures from Colin Barker, Jun 23 2019: (Start)
G.f.: x^4*(1 + 2*x + 4*x^2 + 5*x^3 + 6*x^4 + 4*x^5 + 3*x^6) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5) - 3*a(n-6) - 4*a(n-7) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) - 2*a(n-12) - 2*a(n-13) - a(n-14) + a(n-16) for n>15.
(End)

A308266 Sum of the middle parts in the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 8, 11, 18, 22, 31, 40, 51, 62, 80, 93, 114, 135, 159, 183, 217, 244, 282, 320, 362, 404, 459, 505, 565, 625, 690, 755, 836, 906, 993, 1080, 1173, 1266, 1378, 1477, 1596, 1715, 1841, 1967, 2115, 2248, 2404, 2560, 2724, 2888, 3077, 3249, 3447
Offset: 1

Views

Author

Wesley Ivan Hurt, May 17 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      1      3      5      8     11     18     22      ...
-----------------------------------------------------------------------
		

Crossrefs

Cf. A308265.

Programs

  • Mathematica
    Table[Sum[Sum[i, {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
    Table[Total[IntegerPartitions[n,{3}][[All,2]]],{n,60}] (* Harvey P. Dale, Jul 09 2020 *)

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} i.
Conjectures from Colin Barker, Jul 16 2019: (Start)
G.f.: x^3*(1 + x + x^2 + x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - 4*a(n-5) - a(n-6) + 2*a(n-7) + 2*a(n-8) - a(n-10) for n>10.
(End)
Showing 1-2 of 2 results.