cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A205801 Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) / (n^2) ).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 52417, 461161, 2427481, 10744471, 219643711, 2619643027, 18939628891, 1410692293921, 23943786881281, 263853697605841, 2237281161036337, 53316533506210471, 900164075618402911, 11265158441537890891, 112769404714319769571
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Number of permutations of [n] whose cycle lengths are squares. - Alois P. Heinz, May 12 2016

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/4 + x^9/9 + x^16/16 + x^25/25 + x^36/36 +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j),
           a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 12 2016
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[If[IntegerQ @ Sqrt[j], a[n-j]*(j-1)! * Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 19 2017, after Alois P. Heinz *)
    nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 17 2019 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)/(m^2)+x*O(x^n))), n)}
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022

Formula

The e.g.f. A(x)=1+a(1)x+a(2)x^2/2!+... is equal to the power series expansion of the product of (1-x^n)^{-lambda(n)/n} (n=1,2,...) where lambda(n) is the Liouville function A008836 (follows easily from the Lambert series of lambda(n) - see e. g., the Wikipedia link). - Mamuka Jibladze, Jan 12 2014
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor(sqrt(n))} a(n-k^2)/(n-k^2)!. - Seiichi Manyama, Apr 29 2022

A308396 Expansion of e.g.f. exp(-Sum_{k>=1} x^(k^2)/k^2).

Original entry on oeis.org

1, -1, 1, -1, -5, 29, -89, 209, 841, -50905, 458641, -2423521, 8243731, 158742869, -2450634185, 18519809489, -1402926535919, 21355930009679, -139305034406879, 306503668195775, 40578438892908331, -816475138658703091, 6941097158619626311, -24787202385366731311
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[-Sum[x^(k^2)/k^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[Product[(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: Product_{k>=1} (1 - x^k)^(lambda(k)/k), where lambda() is the Liouville function (A008836).

A308398 Expansion of e.g.f. exp(Sum_{k>=1} x^(k^2)*(x^(k^2) - 1)/k^2).

Original entry on oeis.org

1, -1, 3, -7, 19, -51, 61, 167, 6777, -107929, 1650691, -17839911, 157217083, -1229269627, 6185945949, -3251776921, -1151787785999, 10138302541647, 532690324952707, -14122245788830279, 443912721023736291, -7480012715591067331, 115775303074594208893, -1392396864130912381017
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Sum[x^(k^2) (x^(k^2) - 1)/k^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[Product[1/(1 + x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: Product_{k>=1} 1/(1 + x^k)^(lambda(k)/k), where lambda() is the Liouville function (A008836).
Showing 1-3 of 3 results.