cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A308422 a(n) = n^2 if n odd, 3*n^2/4 if n even.

Original entry on oeis.org

0, 1, 3, 9, 12, 25, 27, 49, 48, 81, 75, 121, 108, 169, 147, 225, 192, 289, 243, 361, 300, 441, 363, 529, 432, 625, 507, 729, 588, 841, 675, 961, 768, 1089, 867, 1225, 972, 1369, 1083, 1521, 1200, 1681, 1323, 1849, 1452, 2025, 1587, 2209, 1728, 2401, 1875, 2601, 2028, 2809, 2187, 3025
Offset: 0

Views

Author

Ilya Gutkovskiy, May 26 2019

Keywords

Comments

Moebius transform of A076577.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n^2, 3 n^2/4]; Table[a[n], {n, 0, 55}]
    nmax = 55; CoefficientList[Series[x (1 + 3 x + 6 x^2 + 3 x^3 + x^4)/(1 - x^2)^3, {x, 0, nmax}], x]
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 1, 3, 9, 12, 25}, 56]
    Table[(7 - (-1)^n) n^2/8, {n, 0, 55}]

Formula

G.f.: x*(1 + 3*x + 6*x^2 + 3*x^3 + x^4)/(1 - x^2)^3.
G.f.: Sum_{k>=1} J_2(k)*x^k/(1 - x^(2*k)), where J_2() is the Jordan function (A007434).
E.g.f.: x*((4 + 3*x)*cosh(x) + (3 + 4*x)*sinh(x))/4.
Dirichlet g.f.: zeta(s-2)*(1 - 1/2^s).
a(n) = (7 - (-1)^n)*n^2/8.
a(n) = Sum_{d|n, n/d odd} J_2(d).
a(2*k+1) = A016754(k), a(2*k) = A033428(k).
Sum_{n>=1} 1/a(n) = 13*Pi^2/72 = 1.7820119057522453061...
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi^2/72 = 0.68538919452009434853...
Multiplicative with a(2^e) = 3*2^(2*e-2), and a(p^e) = p^(2*e) for odd primes p. - Amiram Eldar, Oct 26 2020
For n >= 1, n*a(n) = A309337(n) = Sum_{d divides n} (-1)^(d+1) * J(3, n/d), where the Jordan totient function J_3(n) = A059376. - Peter Bala, Jan 21 2024

A308417 Expansion of e.g.f. exp(x*(1 + x + x^2)/(1 - x^2)^2).

Original entry on oeis.org

1, 1, 3, 25, 145, 1461, 14011, 169933, 2231265, 32572585, 528302611, 9146070561, 174016032433, 3498446485405, 75954922790475, 1737982233878101, 42327522277348801, 1084073452000879953, 29253450397798616995, 827617575903336189865, 24503022168956714812881
Offset: 0

Views

Author

Ilya Gutkovskiy, May 25 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[x (1 + x + x^2)/(1 - x^2)^2], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 20; CoefficientList[Series[Product[(1 + x^k)^(DirichletConvolve[j^2, MoebiusMu[j], j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Numerator[k/2] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]
  • PARI
    my(x ='x + O('x^30)); Vec(serlaplace(exp(x*(1 + x + x^2)/(1 - x^2)^2))) \\ Michel Marcus, May 26 2019

Formula

E.g.f.: exp(Sum_{k>=1} A026741(k)*x^k).
E.g.f.: Product_{k>=1} (1 + x^k)^(J_2(k)/k), where J_2() is the Jordan function (A007434).
a(0) = 1; a(n) = Sum_{k=1..n} A026741(k)*k!*binomial(n-1,k-1)*a(n-k).
a(n) ~ 2^(-1/6) * 3^(-1/3) * n^(n - 1/6) * exp((3/2)^(4/3) * n^(2/3) - n). - Vaclav Kotesovec, May 29 2019
Showing 1-2 of 2 results.