cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A226141 Sum of the squared parts of the partitions of n into exactly two parts.

Original entry on oeis.org

0, 2, 5, 18, 30, 64, 91, 156, 204, 310, 385, 542, 650, 868, 1015, 1304, 1496, 1866, 2109, 2570, 2870, 3432, 3795, 4468, 4900, 5694, 6201, 7126, 7714, 8780, 9455, 10672, 11440, 12818, 13685, 15234, 16206, 17936, 19019, 20940, 22140, 24262, 25585, 27918, 29370, 31924, 33511
Offset: 1

Views

Author

Wesley Ivan Hurt, May 27 2013

Keywords

Examples

			a(5) = 30; 5 has exactly 2 partitions into two parts, (4,1) and (3,2). Squaring the parts and adding, we get: 1^2 + 2^2 + 3^2 + 4^2 = 30.
		

Crossrefs

Sum of k-th powers of the parts in the partitions of n into two parts for k=0..10: A052928 (k=0), A093353 (k=1), this sequence (k=2), A294270 (k=3), A294271 (k=4), A294272 (k=5), A294273 (k=6), A294274 (k=7), A294275 (k=8), A294276 (k=9), A294279 (k=10).

Programs

  • Magma
    [n*(8*n^2 - 9*n + 4)/24 + (-1)^n*n^2/8 : n in [1..80]]; // Wesley Ivan Hurt, Jun 22 2024
  • Maple
    a:=n->sum(i^2 + (n-i)^2, i=1..floor(n/2)); seq((a(k), k=1..40);
  • Mathematica
    Array[Sum[i^2 + (# - i)^2, {i, Floor[#/2]}] &, 39] (* Michael De Vlieger, Jan 23 2018 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{0,2,5,18,30,64,91},50] (* Harvey P. Dale, Jul 23 2019 *)

Formula

a(n) = Sum_{i=1..floor(n/2)} (i^2 + (n-i)^2).
a(n) = n*(8*n^2 - 9*n + 4)/24 + (-1)^n*n^2/8. - Giovanni Resta, May 29 2013
G.f.: x^2*(2+3*x+7*x^2+3*x^3+x^4) / ( (1+x)^3*(x-1)^4 ). - R. J. Mathar, Jun 07 2013
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7). - Wesley Ivan Hurt, Jun 22 2024
a(n) = A000330(n) - A308422(n). - Wesley Ivan Hurt, Jul 16 2025

A309335 a(n) = n^3 if n odd, 7*n^3/8 if n even.

Original entry on oeis.org

0, 1, 7, 27, 56, 125, 189, 343, 448, 729, 875, 1331, 1512, 2197, 2401, 3375, 3584, 4913, 5103, 6859, 7000, 9261, 9317, 12167, 12096, 15625, 15379, 19683, 19208, 24389, 23625, 29791, 28672, 35937, 34391, 42875, 40824, 50653, 48013, 59319, 56000, 68921, 64827, 79507, 74536, 91125
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 24 2019

Keywords

Comments

Moebius transform of A007331.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n^3, 7 n^3/8]; Table[a[n], {n, 0, 45}]
    nmax = 45; CoefficientList[Series[x (1 + 7 x + 23 x^2 + 28 x^3 + 23 x^4 + 7 x^5 + x^6)/(1 - x^2)^4, {x, 0, nmax}], x]
    LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {0, 1, 7, 27, 56, 125, 189, 343}, 46]
    Table[n^3 (15 - (-1)^n)/16, {n, 0, 45}]

Formula

G.f.: x * (1 + 7*x + 23*x^2 + 28*x^3 + 23*x^4 + 7*x^5 + x^6)/(1 - x^2)^4.
G.f.: Sum_{k>=1} J_3(k) * x^k/(1 - x^(2*k)), where J_3() is the Jordan function (A059376).
Dirichlet g.f.: zeta(s-3) * (1 - 1/2^s).
a(n) = n^3 * (15 - (-1)^n)/16.
a(n) = Sum_{d|n, n/d odd} J_3(d).
Sum_{n>=1} 1/a(n) = 57*zeta(3)/56 = 1.223522205001729897639...
Multiplicative with a(2^e) = 7*2^(3*e-3), and a(p^e) = p^(3*e) for odd primes p. - Amiram Eldar, Oct 26 2020
Euler transform is A248882. - Georg Fischer, Nov 10 2020

A308418 Expansion of e.g.f. exp(x*(1 + 3*x + 6*x^2 + 3*x^3 + x^4)/(1 - x^2)^3).

Original entry on oeis.org

1, 1, 7, 73, 649, 8821, 122311, 2064637, 37933393, 773276329, 17257075111, 414876953041, 10780187135257, 298418920103773, 8812636845668839, 275368711393020421, 9091457478119636641, 315782978460465185617, 11511089733834178827463, 439231563093877354663129
Offset: 0

Views

Author

Ilya Gutkovskiy, May 25 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[x (1 + 3 x + 6 x^2 + 3 x^3 + x^4)/(1 - x^2)^3], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 19; CoefficientList[Series[Product[(1 + x^k)^(DirichletConvolve[j^3, MoebiusMu[j], j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[1/8 (7 - (-1)^k) k^2 k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]
  • PARI
    my(x ='x + O('x^30)); Vec(serlaplace(exp(x*(1+3*x+6*x^2+3*x^3+x^4)/(1-x^2)^3))) \\ Michel Marcus, May 26 2019

Formula

E.g.f.: exp(Sum_{k>=1} J_2(k)*x^k/(1 - x^(2*k))), where J_2() is the Jordan function (A007434).
E.g.f.: Product_{k>=1} (1 + x^k)^(J_3(k)/k), where J_3() is the Jordan function (A059376).
a(n) ~ 2^(-5/4) * 21^(1/8) * n^(n - 1/8) * exp(2^(3/2) * 3^(-3/4) * 7^(1/4) * n^(3/4) - n). - Vaclav Kotesovec, May 28 2019
E.g.f.: exp(Sum_{k>=1} A308422(k)*x^k). - Ilya Gutkovskiy, May 29 2019

A309336 a(n) = n^4 if n odd, 15*n^4/16 if n even.

Original entry on oeis.org

0, 1, 15, 81, 240, 625, 1215, 2401, 3840, 6561, 9375, 14641, 19440, 28561, 36015, 50625, 61440, 83521, 98415, 130321, 150000, 194481, 219615, 279841, 311040, 390625, 428415, 531441, 576240, 707281, 759375, 923521, 983040, 1185921, 1252815, 1500625, 1574640, 1874161, 1954815
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 24 2019

Keywords

Comments

Moebius transform of A285989.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n^4, 15 n^4/16]; Table[a[n], {n, 0, 38}]
    nmax = 38; CoefficientList[Series[x (1 + 15 x + 76 x^2 + 165 x^3 + 230 x^4 + 165 x^5 + 76 x^6 + 15 x^7 + x^8)/(1 - x^2)^5, {x, 0, nmax}], x]
    LinearRecurrence[{0, 5, 0, -10, 0, 10, 0, -5, 0, 1}, {0, 1, 15, 81, 240, 625, 1215, 2401, 3840, 6561}, 39]
    Table[n^4 (31 - (-1)^n)/32, {n, 0, 38}]

Formula

G.f.: x * (1 + 15*x + 76*x^2 + 165*x^3 + 230*x^4 + 165*x^5 + 76*x^6 + 15*x^7 + x^8)/(1 - x^2)^5.
G.f.: Sum_{k>=1} J_4(k) * x^k/(1 - x^(2*k)), where J_4() is the Jordan function (A059377).
Dirichlet g.f.: zeta(s-4) * (1 - 1/2^s).
a(n) = n^4 * (31 - (-1)^n)/32.
a(n) = Sum_{d|n, n/d odd} J_4(d).
Sum_{n>=1} 1/a(n) = 241*Pi^4/21600 = 1.086832913851601267313987...
Multiplicative with a(2^e) = 15*2^(4*e-4), and a(p^e) = p^(4*e) for odd primes p. - Amiram Eldar, Oct 26 2020
Showing 1-4 of 4 results.