cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308524 Number of essentially 3-connected rooted toroidal maps with n edges.

Original entry on oeis.org

0, 0, 1, 2, 11, 40, 166, 658, 2647, 10592, 42446, 169972, 680670, 2725320, 10910992, 43678882, 174843151, 699839680, 2801078662, 11210671612, 44866276906, 179552951440, 718539964132, 2875389341332, 11506176209206, 46042099714240, 184234059839116, 737184620655368
Offset: 0

Views

Author

Nicolas Bonichon, Jun 05 2019

Keywords

Crossrefs

Programs

  • Maple
    dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(1+A)^2, A), x = 0, n+1);
    seq(coeff(series(subs(A = dev_A, A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A))), x, n+1), x, k), k = 0 .. n);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<6, [0, 0, 1, 2, 11, 40][n+1],
         ((37*n^2-258*n+401)*a(n-1)-6*(2*n^2-25*n+88)*a(n-2)
          -48*(3*n^2-23*n+45)*a(n-3)-32*(n-4)*(2*n-7)*a(n-4))
          /((6*(n-1))*(n-5)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 07 2019
  • Mathematica
    CoefficientList[Series[x*(1 + 8*x + (2*x - 1)*Sqrt[1 - 4*x])/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jun 25 2019 *)

Formula

G.f.: A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A)) where A=x*(1+A)^2.
G.f.: x*(1 + 8*x + (2*x - 1)*sqrt(1 - 4*x))/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)). - Vaclav Kotesovec, Jun 25 2019
a(n) ~ 2^(2*n - 3) / 3. - Vaclav Kotesovec, Jun 25 2019