cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A308548 Number of (not necessarily connected) graceful graphs on n vertices.

Original entry on oeis.org

1, 1, 2, 7, 22, 126, 959, 12046
Offset: 1

Views

Author

Eric W. Weisstein, Jun 06 2019

Keywords

Crossrefs

Cf. A000088, A308549 (connected graceful graphs), A308556.

Formula

a(n) = A000088(n) - A308556(n). - Pontus von Brömssen, Dec 29 2024

Extensions

a(8) from Eric W. Weisstein, Aug 16 2019

A308557 Number of connected ungraceful graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 3, 6, 34, 148
Offset: 1

Views

Author

Eric W. Weisstein, Jun 07 2019

Keywords

Crossrefs

Cf. A001349, A308549, A308556 (not necessarily connected ungraceful graphs).

Formula

a(n) = A001349(n) - A308549(n). - Pontus von Brömssen, Dec 29 2024

Extensions

a(8) from Eric W. Weisstein, Aug 16 2019

A333865 Number of simple graphs on n nodes with vertex count > edge count + 1.

Original entry on oeis.org

0, 1, 2, 4, 8, 18, 40, 100, 256, 705, 2057, 6370, 20803, 71725, 259678, 985244, 3905022, 16124936, 69188809, 307765510, 1416146859, 6727549181, 32938379216, 165942445714, 859020421012, 4563322971706, 24847598243116, 138533012486423, 790075521708603, 4605183081182354
Offset: 1

Views

Author

Eric W. Weisstein, Apr 08 2020

Keywords

Comments

These graphs correspond to "trivially ungraceful" graphs that do not have enough integers less than or equal to the edge count to cover all the vertices.

Crossrefs

Cf. A008406.
Cf. A308556 (number of simple ungraceful graphs on n nodes).

Programs

  • Mathematica
    Get["Combinatorica`"] // Quiet;
    Table[Total[Take[CoefficientList[GraphPolynomial[n, x], x], n - 1]], {n, 20}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    a(n)={my(s=0); if(n>1, forpart(p=n, s+=permcount(p)*polcoef(edges(p, i->1 + x^i + O(x^(n-1)))/(1-x), n-2) )); s/n!} \\ Andrew Howroyd, Apr 08 2020

Formula

a(n) <= A308556(n).
a(n) = Sum_{k=0..n-2} A008406(n, k). - Andrew Howroyd, Apr 08 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Apr 08 2020
Showing 1-3 of 3 results.