A308548
Number of (not necessarily connected) graceful graphs on n vertices.
Original entry on oeis.org
1, 1, 2, 7, 22, 126, 959, 12046
Offset: 1
A308557
Number of connected ungraceful graphs on n nodes.
Original entry on oeis.org
0, 0, 0, 0, 3, 6, 34, 148
Offset: 1
A333865
Number of simple graphs on n nodes with vertex count > edge count + 1.
Original entry on oeis.org
0, 1, 2, 4, 8, 18, 40, 100, 256, 705, 2057, 6370, 20803, 71725, 259678, 985244, 3905022, 16124936, 69188809, 307765510, 1416146859, 6727549181, 32938379216, 165942445714, 859020421012, 4563322971706, 24847598243116, 138533012486423, 790075521708603, 4605183081182354
Offset: 1
Cf.
A308556 (number of simple ungraceful graphs on n nodes).
-
Get["Combinatorica`"] // Quiet;
Table[Total[Take[CoefficientList[GraphPolynomial[n, x], x], n - 1]], {n, 20}]
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
a(n)={my(s=0); if(n>1, forpart(p=n, s+=permcount(p)*polcoef(edges(p, i->1 + x^i + O(x^(n-1)))/(1-x), n-2) )); s/n!} \\ Andrew Howroyd, Apr 08 2020
Showing 1-3 of 3 results.
Comments