cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308695 a(n) is the minimum positive integer m such that m * 2^(n + 2) + 1 is a prime number which does not divide ((F(n + 2) - 1)^m - 1)/(F(n + 2) - 2), where F(n) is the n-th Fermat number (A000215).

Original entry on oeis.org

1, 2, 1, 8, 4, 2, 1, 128, 64, 32, 16, 8, 4, 2, 1, 6300, 3150, 26, 13, 579, 1069378, 534689, 10, 5, 387304, 193652, 96826, 48413, 141015, 298082, 149041, 2958, 1479, 51418638746, 25709319373, 20, 10, 5, 6, 3
Offset: 0

Views

Author

Keywords

Comments

Note that some terms are obtained by dividing the previous one by 2.
From Jinyuan Wang, Feb 18 2020: (Start)
a(n) is the least m such that q = m*2^(n + 2) + 1 is a prime factor of F(n + 2) - 2. Proof: if r(n + 2)/s(n + 2) = ((F(n + 2) - 1)^m - 1)/(F(n + 2) - 2) is not divisible by q, then q divides s(n + 2) because r(n + 2) is always divisible by q (by Fermat's little theorem). Also note that if F(n + 2) - 1 == 1 (mod q), then r(n + 2)/s(n + 2) = Sum_{i = 0..m-1} A001146(n + 2)^i == m (mod q). In conclusion, prime q = m*2^(n + 2) + 1 does not divide r(n + 2)/s(n + 2) if and only if q divides F(n + 2) - 2 = Product_{i = 0..n + 1} F(i).
a(n) always exists because prime factors of F(n) are of the form k*2^(n + 2) + 1. a(n) is not greater than the smallest such k. (End)
a(40) <= 74327396788321657. - Max Alekseyev, Nov 17 2022

Examples

			2 is the minimum positive integer m such that m * 2^(1 + 2) + 1 is a prime number (note that 2 * 2^(1 + 2) + 1 = 17) which does not divide ((F(1 + 2) - 1)^m - 1)/(F(1 + 2) - 2) (note that ((F(1 + 2) - 1)^2 - 1)/(F(1 + 2) - 2) = 257, which is a prime number).
		

Crossrefs

Cf. A000215 (Fermat numbers), A001146.

Programs

  • Maple
    A308695:=proc(n)
       local m:
       m:=1:
       while not isprime(m*2^(n+2)+1) or (2^(2^(n+2))-1) mod (m*2^(n+2)+1) != 0 do
          m:=m+1:
       od:
       return m:
    end proc:
  • Mathematica
    Array[Block[{m = 1}, While[Nand[PrimeQ[#4], Mod[((#3 - 1)^#1 - 1)/(#3 - 2), #4] != 0] & @@ {m, #, 2^(2^(# + 2)) + 1, m*2^(# + 2) + 1}, m++]; m] &, 14] (* Michael De Vlieger, Feb 14 2020 *)
  • PARI
    F(n) = 2^(2^n) + 1;
    a(n) = {my(m=1); while (!isprime(p=(m*2^(n+2)+1)) || !((((F(n+2)-1)^m-1)/ (F(n+2)-2)) % p), m++); m;} \\ Michel Marcus, Feb 14 2020
    
  • PARI
    a(n) = {my(d=4*2^n, q=1); for(m=1, oo, q+=d; if(ispseudoprime(q) && Mod(2, q)^d==1, return(m))); } \\ Jinyuan Wang, Feb 18 2020

Extensions

a(15)-a(32) from Jinyuan Wang, Feb 18 2020
a(33)-a(39) from Max Alekseyev, Nov 17 2022