A308695 a(n) is the minimum positive integer m such that m * 2^(n + 2) + 1 is a prime number which does not divide ((F(n + 2) - 1)^m - 1)/(F(n + 2) - 2), where F(n) is the n-th Fermat number (A000215).
1, 2, 1, 8, 4, 2, 1, 128, 64, 32, 16, 8, 4, 2, 1, 6300, 3150, 26, 13, 579, 1069378, 534689, 10, 5, 387304, 193652, 96826, 48413, 141015, 298082, 149041, 2958, 1479, 51418638746, 25709319373, 20, 10, 5, 6, 3
Offset: 0
Keywords
Examples
2 is the minimum positive integer m such that m * 2^(1 + 2) + 1 is a prime number (note that 2 * 2^(1 + 2) + 1 = 17) which does not divide ((F(1 + 2) - 1)^m - 1)/(F(1 + 2) - 2) (note that ((F(1 + 2) - 1)^2 - 1)/(F(1 + 2) - 2) = 257, which is a prime number).
Links
- Lorenzo Sauras Altuzarra, Some arithmetical problems that are obtained by analyzing proofs and infinite graphs, arXiv:2002.03075 [math.NT], 2020.
Programs
-
Maple
A308695:=proc(n) local m: m:=1: while not isprime(m*2^(n+2)+1) or (2^(2^(n+2))-1) mod (m*2^(n+2)+1) != 0 do m:=m+1: od: return m: end proc:
-
Mathematica
Array[Block[{m = 1}, While[Nand[PrimeQ[#4], Mod[((#3 - 1)^#1 - 1)/(#3 - 2), #4] != 0] & @@ {m, #, 2^(2^(# + 2)) + 1, m*2^(# + 2) + 1}, m++]; m] &, 14] (* Michael De Vlieger, Feb 14 2020 *)
-
PARI
F(n) = 2^(2^n) + 1; a(n) = {my(m=1); while (!isprime(p=(m*2^(n+2)+1)) || !((((F(n+2)-1)^m-1)/ (F(n+2)-2)) % p), m++); m;} \\ Michel Marcus, Feb 14 2020
-
PARI
a(n) = {my(d=4*2^n, q=1); for(m=1, oo, q+=d; if(ispseudoprime(q) && Mod(2, q)^d==1, return(m))); } \\ Jinyuan Wang, Feb 18 2020
Extensions
a(15)-a(32) from Jinyuan Wang, Feb 18 2020
a(33)-a(39) from Max Alekseyev, Nov 17 2022
Comments