A336452
Triangle read by rows, the Riordan square of the number of achiral m-color cyclic compositions of n (A308747). T(n,k) for 1 <= k <= n.
Original entry on oeis.org
1, 3, 3, 6, 15, 9, 13, 49, 63, 27, 23, 137, 276, 243, 81, 44, 338, 969, 1323, 891, 243, 73, 782, 2950, 5589, 5778, 3159, 729, 131, 1695, 8161, 20097, 28485, 23733, 10935, 2187, 210, 3545, 20966, 64557, 117801, 133569, 93312, 37179, 6561
Offset: 1
[1] [ 1]
[2] [ 3, 3]
[3] [ 6, 15, 9]
[4] [ 13, 49, 63, 27]
[5] [ 23, 137, 276, 243, 81]
[6] [ 44, 338, 969, 1323, 891, 243]
[7] [ 73, 782, 2950, 5589, 5778, 3159, 729]
[8] [ 131, 1695, 8161, 20097, 28485, 23733, 10935, 2187]
[9] [ 210, 3545, 20966, 64557, 117801, 133569, 93312, 37179, 6561]
-
# using riordan_square_array from A321620, A308747.
riordan_square_array([1, 3, 6, 13, 23, 44, 73, 131, 210])
A032198
"CIK" (necklace, indistinct, unlabeled) transform of 1,2,3,4,...
Original entry on oeis.org
1, 3, 6, 13, 25, 58, 121, 283, 646, 1527, 3601, 8678, 20881, 50823, 124054, 304573, 750121, 1855098, 4600201, 11442085, 28527446, 71292603, 178526881, 447919418, 1125750145, 2833906683, 7144450566, 18036423973
Offset: 1
From _Petros Hadjicostas_, Jan 07 2018: (Start)
We give some examples to illustrate the theory of C. G. Bower about transforms given in the weblink above. We assume we have boxes of different sizes and colors that we place on a circle to form a necklace. Two boxes of the same size and same color are considered identical (indistinct and unlabeled). We do, however, change the roles of the sequences (a(n): n>=1) and (b(n): n>=1) that appear in the weblink above. We assume (a(n): n>=1) = CIK((b(n): n>=1)).
Since b(1) = 1, b(2) = 2, b(3) = 3, etc., a box that can hold 1 ball only can be of 1 color only, a box that can hold 2 balls only can be one of 2 colors only, a box that can hold 3 balls can be one of 3 colors, and so on.
To prove that a(3) = 6, we consider three cases. In the first case, we have a single box that can hold 3 balls, and thus we have 3 possibilities for the 3 colors the box can be. In the second case, we have a box that can hold 2 balls and a box that can hold 1 ball. Here, we have 2 x 1 = 2 possibilities. In the third case, we have 3 identical boxes, each of which can hold 1 ball. This gives rise to 1 possibility. Hence, a(3) = 3 + 2 + 1 = 6.
To prove that a(4) = 13, we consider 5 cases: a box with 4 balls (4 possibilities), one box with 3 balls and one box with 1 ball (3 possibilities), two identical boxes each with 2 balls (3 possibilities), one box with 2 balls and two identical boxes each with 1 ball (2 possibilities), and four identical boxes each with 1 ball (1 possibility). Thus, a(4) = 4 + 3 + 3 + 2 + 1 = 13.
(End)
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- C. G. Bower, Transforms (2).
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 31.
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- P. Flajolet and M. Soria, The Cycle Construction. [pdf file]
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Index entries for sequences related to necklaces
-
nmax = 30;
f[x_] = Sum[n*x^n, {n, 1, nmax}];
gf = Sum[(EulerPhi[n]/n)*Log[1/(1 - f[x^n])] + O[x]^nmax, {n, 1, nmax}]/x;
CoefficientList[gf, x] (* Jean-François Alcover, Jul 29 2018, after Joerg Arndt *)
-
N = 66; x = 'x + O('x^N);
f(x)=sum(n=1, N, n*x^n );
gf = sum(n=1, N, eulerphi(n)/n*log(1/(1-f(x^n))) );
v = Vec(gf)
/* Joerg Arndt, Jan 21 2013 */
A032287
"DIK" (bracelet, indistinct, unlabeled) transform of 1,2,3,4,...
Original entry on oeis.org
1, 3, 6, 13, 24, 51, 97, 207, 428, 946, 2088, 4831, 11209, 26717, 64058, 155725, 380400, 936575, 2314105, 5744700, 14300416, 35708268, 89359536, 224121973, 563126689, 1417378191, 3572884062, 9019324297, 22797540648
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- C. G. Bower, Transforms (2).
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Arnold Knopfmacher and Neville Robbins, Some properties of dihedral compositions, Util. Math. 92 (2013), 207-220.
- Index entries for sequences related to bracelets
-
DIK := proc(L::list)
local x,cidx,ncyc,d,gd,g,g2,n ;
n := nops(L) ;
g := add(op(i,L)*x^i,i=1..n) ;
# wrap into the cycle index of the cyclic group C_n
cidx := 0 ;
for ncyc from 1 to n do
for d in numtheory[divisors](ncyc) do
gd := subs(x=x^d,g) ;
cidx := cidx+1/ncyc*numtheory[phi](d)*gd^(ncyc/d) ;
end do:
end do:
# cycle index is half of th eone for the cyclic group plus two
# different branches or D_n with even or odd n
cidx := cidx/2 ;
g2 := subs(x=x^2,g) ;
for ncyc from 1 to n do
if type(ncyc,'odd') then
cidx := cidx+ g*g2^((ncyc-1)/2)/2 ;
else
cidx := cidx+ (g^2*g2^((ncyc-2)/2) + g2^(ncyc/2))/4 ;
end if;
end do:
taylor(cidx,x=0,nops(L)) ;
gfun[seriestolist](%) ;
end proc:
A032287_list := proc(n)
local ele ;
ele := [seq(i,i=1..40)] ;
DIK(ele) ;
end proc:
A032287_list(50) ; # R. J. Mathar, Feb 14 2025
-
seq[n_] := x(1 + x - 2 x^2 + x^3 + x^4)/((1 - x)^2 (1 - x - x^2)(1 + x - x^2)) + Sum[EulerPhi[d]/d Log[(1 - x^d)^2/(1 - 3 x^d + x^(2d)) + O[x]^(n+1)], {d, 1, n}] // CoefficientList[#, x]& // Rest // #/2&;
seq[30] (* Jean-François Alcover, Sep 17 2019, from PARI *)
-
seq(n)={Vec(x*(1 + x - 2*x^2 + x^3 + x^4)/((1 - x)^2*(1 - x - x^2)*(1 + x - x^2)) + sum(d=1, n, eulerphi(d)/d*log((1 - x^d)^2/(1 - 3*x^d + x^(2*d)) + O(x*x^n))))/2} \\ Andrew Howroyd, Jun 20 2018
Showing 1-3 of 3 results.
Comments