A032170
"CHK" (necklace, identity, unlabeled) transform of 1, 2, 3, 4, ...
Original entry on oeis.org
1, 2, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800
Offset: 1
- Michael De Vlieger, Table of n, a(n) for n = 1..2400
- Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See line N = 6 in Table 1 (p. 6).
- C. G. Bower, Transforms (2).
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Arnold's cat map.
- Wikipedia, Arnold's cat map.
- Index entries for sequences related to Lyndon words
Cf.
A000010,
A001221,
A001906,
A004146,
A032164,
A032165,
A032166,
A032167,
A032198,
A005248,
A108529,
A113788.
-
Table[DivisorSum[n, MoebiusMu[n/#] (LucasL[2 #] - 2) &]/n, {n, 31}] (* Michael De Vlieger, Nov 18 2017 *)
A032287
"DIK" (bracelet, indistinct, unlabeled) transform of 1,2,3,4,...
Original entry on oeis.org
1, 3, 6, 13, 24, 51, 97, 207, 428, 946, 2088, 4831, 11209, 26717, 64058, 155725, 380400, 936575, 2314105, 5744700, 14300416, 35708268, 89359536, 224121973, 563126689, 1417378191, 3572884062, 9019324297, 22797540648
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- C. G. Bower, Transforms (2).
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Arnold Knopfmacher and Neville Robbins, Some properties of dihedral compositions, Util. Math. 92 (2013), 207-220.
- Index entries for sequences related to bracelets
-
DIK := proc(L::list)
local x,cidx,ncyc,d,gd,g,g2,n ;
n := nops(L) ;
g := add(op(i,L)*x^i,i=1..n) ;
# wrap into the cycle index of the cyclic group C_n
cidx := 0 ;
for ncyc from 1 to n do
for d in numtheory[divisors](ncyc) do
gd := subs(x=x^d,g) ;
cidx := cidx+1/ncyc*numtheory[phi](d)*gd^(ncyc/d) ;
end do:
end do:
# cycle index is half of th eone for the cyclic group plus two
# different branches or D_n with even or odd n
cidx := cidx/2 ;
g2 := subs(x=x^2,g) ;
for ncyc from 1 to n do
if type(ncyc,'odd') then
cidx := cidx+ g*g2^((ncyc-1)/2)/2 ;
else
cidx := cidx+ (g^2*g2^((ncyc-2)/2) + g2^(ncyc/2))/4 ;
end if;
end do:
taylor(cidx,x=0,nops(L)) ;
gfun[seriestolist](%) ;
end proc:
A032287_list := proc(n)
local ele ;
ele := [seq(i,i=1..40)] ;
DIK(ele) ;
end proc:
A032287_list(50) ; # R. J. Mathar, Feb 14 2025
-
seq[n_] := x(1 + x - 2 x^2 + x^3 + x^4)/((1 - x)^2 (1 - x - x^2)(1 + x - x^2)) + Sum[EulerPhi[d]/d Log[(1 - x^d)^2/(1 - 3 x^d + x^(2d)) + O[x]^(n+1)], {d, 1, n}] // CoefficientList[#, x]& // Rest // #/2&;
seq[30] (* Jean-François Alcover, Sep 17 2019, from PARI *)
-
seq(n)={Vec(x*(1 + x - 2*x^2 + x^3 + x^4)/((1 - x)^2*(1 - x - x^2)*(1 + x - x^2)) + sum(d=1, n, eulerphi(d)/d*log((1 - x^d)^2/(1 - 3*x^d + x^(2*d)) + O(x*x^n))))/2} \\ Andrew Howroyd, Jun 20 2018
A322059
Expansion of generating function related to a certain class of combinatorial objects.
Original entry on oeis.org
1, 3, 8, 21, 50, 128
Offset: 1
- N.Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 1001-1002.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, errata.
- N. J. A. Sloane, Annotated scan of page 1001 of Bona (2015).
- N. J. A. Sloane, Annotated scan of page 1002 of Bona (2015).
A329156
Expansion of Product_{k>=1} 1 / (1 - Sum_{j>=1} j * x^(k*j)).
Original entry on oeis.org
1, 1, 4, 10, 29, 72, 200, 510, 1364, 3546, 9348, 24400, 64090, 167562, 439200, 1149360, 3010349, 7879832, 20633304, 54014950, 141422328, 370239300, 969323000, 2537696160, 6643839400, 17393731933, 45537549048, 119218684970, 312119004990, 817137724392, 2139295489200, 5600747143950
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
end:
a:= proc(n) option remember; `if`(n=0, 1,
-add(a(j)*b(n-j$2), j=0..n-1))
end:
seq(a(n), n=0..31); # Alois P. Heinz, Jul 25 2025
-
nmax = 31; CoefficientList[Series[Product[1/(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 31; CoefficientList[Series[Product[1/(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]
A005594
States of a dynamic storage system.
Original entry on oeis.org
1, 2, 4, 7, 14, 26, 59, 122, 284, 647, 1528, 3602, 8679, 20882, 50824, 124055, 304574, 750122, 1855099, 4600202, 11442086, 28527447, 71292604, 178526882, 447919419, 1125750146, 2833906684, 7144450567, 18036423974
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- C. G. Bower, Transforms
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 107
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 111
- M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392.
- M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392. (Annotated scanned copy)
- Index entries for sequences related to necklaces
-
nmax = 30;
f[x_] = Sum[n*x^n, {n, 1, nmax}];
gf = Sum[(EulerPhi[n]/n)*Log[1/(1 - f[x^n])] + O[x]^nmax, {n, 1, nmax}];
CoefficientList[gf, x] + 1 (* Jean-François Alcover, Jul 29 2018, after Joerg Arndt *)
A308723
Total number of parts in all m-cyclic compositions of n (where each part of size m can be colored with one of m colors).
Original entry on oeis.org
1, 4, 10, 26, 59, 160, 383, 1018, 2606, 6836, 17721, 46580, 121405, 318212, 832190, 2179358, 5702903, 14933264, 39088187, 102341134, 267915110, 701426484, 1836311925, 4807575700, 12586269265, 32951401540, 86267576506, 225851752438, 591286729907, 1548009602240, 4052739537911
Offset: 1
We have a(1) = 1 because 1_1 is the only m-color cyclic composition of n = 1 and the total number of parts is 1.
We have a(2) = 4 because 2_1, 2_2, 1_1 + 1_1 are all the m-color cyclic compositions of 2 and the total number of parts is 1 + 1 + 2 = 4.
We have a(3) = 10 because 3_1, 3_2, 3_3, 1_1 + 2_1, 1_1 + 2_2, 1_1 + 1_1 + 1_1 are all the m-color cyclic compositions of n = 3 and the total number of parts is 1 + 1 + 1 + 2 + 2 + 3 = 10.
We have a(4) = 26 because 4_1, 4_2, 4_3, 4_4, 1_1 + 3_1, 1_1 + 3_2, 1_1 + 3_3, 2_1 + 2_1, 2_1 + 2_2, 2_2 + 2_2, 1_1 + 2_1 + 1_1, 1_1 + 2_2 + 1_1, 1_1 + 1_1 + 1_1 + 1_1 are all the m-color cyclic compositions of n = 4 and the total number of parts is 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 4 = 26.
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math., 31(11) (2000), 1421-1427.
- C. G. Bower, Transforms (2).
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics, 341 (2018), 3209-3226.
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc., S2-7(1) (1909), 263-313.
A308747
Number of achiral m-color cyclic compositions of n (that is, number of cyclic compositions of n with reflection symmetry where each part of size m can be colored with one of m colors).
Original entry on oeis.org
1, 3, 6, 13, 23, 44, 73, 131, 210, 365, 575, 984, 1537, 2611, 4062, 6877, 10679, 18052, 28009, 47315, 73386, 123933, 192191, 324528, 503233, 849699, 1317558, 2224621, 3449495, 5824220, 9030985, 15248099, 23643522, 39920141, 61899647, 104512392, 162055489, 273617107
Offset: 1
We have a(1) = 1 because we only have one symmetric cyclic composition of n = 1, namely 1_1 (and a part of size 1 can be colored with only one color).
We have a(2) = 3 because we have the following colored achiral cyclic compositions of n = 2: 2_1, 2_2, 1_1 + 1_1.
We have a(3) = 6 because we have the following colored achiral cyclic compositions of n = 3: 3_1, 3_2, 3_3, 1_1 + 2_1, 1_1 + 2_2, 1_1 + 1_1 + 1_1.
We have a(4) = 13 because we have the following colored achiral cyclic compositions of n = 4: 4_1, 4_2, 4_3, 4_4, 1_1 + 3_1, 1_1 + 3_2, 1_1 + 3_3, 2_1 + 2_1, 2_1 + 2_2, 2_2 + 2_2, 1_1 + 2_1 + 1_1, 1_1 + 2_2 + 1_1, 1_1 + 1_1 + 1_1 + 1_1.
We have a(5) = 23 because we have the following colored achiral cyclic compositions of n = 5:
(i) with one part: 5_1, 5_2, 5_3, 5_4, 5_5;
(ii) with two parts: 1_1 + 4_1, 1_1 + 4_2, 1_1 + 4_3, 1_1 + 4_4, 2_1 + 3_1, 2_1 + 3_2, 2_1 + 3_3, 2_2 + 3_1, 2_2 + 3_2, 2_2 + 3_3;
(iii) with three parts: 1_1 + 3_1 + 1_1, 1_1 + 3_2 + 1_1, 1_1 + 3_3 + 1_1, 2_1 + 1_1 + 2_1, 2_2 + 1_1 + 2_2;
(iv) with four parts: 1_1 + 1_1 + 2_1 + 1_1, 1_1 + 1_1 + 2_2 + 1_1 (here, the axis of symmetry passes through one of the 1's and through 2);
(v) with five parts: 1_1 + 1_1 + 1_1 + 1_1 + 1_1.
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- Christian G. Bower, Transforms (2).
- Petros Hadjicostas, Generalized colored circular palindromic compositions, Moscow Journal of Combinatorics and Number Theory, 9(2) (2020), 173-186.
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc. S2-7(1) (1909), 263-313.
A329157
Expansion of Product_{k>=1} (1 - Sum_{j>=1} j * x^(k*j)).
Original entry on oeis.org
1, -1, -3, -3, -4, 3, 2, 19, 21, 32, 40, 45, 16, 8, -18, -125, -164, -291, -358, -530, -588, -724, -592, -675, -358, -207, 570, 1201, 2208, 3333, 4944, 6490, 8277, 10492, 11800, 13260, 14328, 14722, 12942, 12075, 5640, 603, -10444, -21120, -39360, -55876, -83488
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..46); # Alois P. Heinz, Jul 18 2025
-
nmax = 46; CoefficientList[Series[Product[(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 46; CoefficientList[Series[Product[(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]
A365857
Number of cyclic compositions of 2*n into odd parts.
Original entry on oeis.org
1, 2, 4, 7, 14, 30, 63, 142, 328, 765, 1810, 4340, 10461, 25414, 62074, 152287, 375166, 927554, 2300347, 5721044, 14264308, 35646311, 89264834, 223959710, 562878429, 1416953362, 3572233420, 9018211989, 22795835726, 57690911720, 146164582455, 370705552702, 941109975022, 2391391374017, 6081865318124
Offset: 1
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 25.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color cyclic compositions, Discrete Mathematics 341 (2018), 3209-3226.
-
N=99; x='x+O('x^N); B(x)=x/(1-x^2);
A=Vec(sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k)))));
vector(#A\2,n,A[2*n]) \\ Joerg Arndt, Sep 22 2023
-
from sympy import totient, lucas, divisors
def A365857(n): return sum(totient((n<<1)//k)*(lucas(k)-((k&1^1)<<1)) for k in divisors(n<<1,generator=True))//n>>1 # Chai Wah Wu, Sep 23 2023
A365859
Number of self-dual cyclic n-color compositions.
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 5, 1, 10, 3, 19, 2, 41, 5, 94, 1, 211, 10, 493, 3, 1170, 19, 2787, 2, 6713, 41, 16274, 5, 39651, 94, 97109, 1, 238838, 211, 589527, 10, 1459961, 493, 3626242, 3, 9030451, 1170, 22542397, 19, 56393862, 2787, 141358275, 2, 354975433, 6713, 892893262, 41, 2249412291, 16274, 5674891017
Offset: 1
Every power of 2 has only one self-dual cyclic n-color composition, which has all parts of size 1.
The self-dual cyclic n-color compositions of 5 are 1_1+1_1+1_1+1_1+1_1, 1_1+2_2+2_1, and 5_3, where the subscript indicates the color of the part, or which vertex is marked within the part.
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 33.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color cyclic compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Brian Hopkins, Jesús Sistos Barrón, and Hua Wang, Conjugating cyclic n-color compositions, Utilitas Mathematica (2025) Vol. 122, 53-64. See p. 61.
- Jesus Omar Sistos Barron, Counting Conjugates of Colored Compositions, Honors College Thesis, Georgia Southern Univ. (2024), No. 985. See p. 25.
-
my(N=66,x='x+O('x^N)); Vec( sum(k=1,N, eulerphi(2*k)/(2*k) * log((1+x^k-x^(2*k))/(1-x^k-x^(2*k))) ) ) \\ Joerg Arndt, Sep 21 2023
-
from sympy import totient, lucas, divisors
def A365859(n):
m = n>>(~n&n-1).bit_length()
return sum(totient(k)*lucas(m//k) for k in divisors(m,generator=True))//m # Chai Wah Wu, Sep 23 2023
Showing 1-10 of 13 results.
Comments