A308853 a(n) is the minimum absolute value of nonzero determinants of order n Latin squares.
1, 3, 18, 80, 75, 126, 196, 144, 405
Offset: 1
Examples
For n=2, the only Latin squares of order 2 are [[1, 2], [2, 1]] and [[2, 1], [1, 2]]. Therefore, the minimum absolute value of the determinants of order 2 Latin squares is 3.
Links
- Brendan McKay, Latin squares
- Hugo Pfoertner, Occurrence counts of determinant values for n=1..8, zipped (2019).
- Eric Weisstein's World of Mathematics, Latin square
- Wikipedia, Latin square
- Index entries for sequences related to determinants
Crossrefs
Programs
-
Sage
# Takes a string and turns it into a square matrix of order n def make_matrix(string,n): m = [] row = [] for i in range(0,n * n): if string[i] == '\n': continue if string[i] == ' ': continue row.append(Integer(string[i]) + 1) if len(row) == n: m.append(row) row = [] return matrix(m) # Reads a file and returns a list of the matrices in the file def fetch_matrices(file_name,n): matrices = [] with open(file_name) as f: L = f.readlines() for i in L: matrices.append(make_matrix(i,n)) return matrices # Takes a matrix and permutates each symbol in the matrix # with the given permutation def permute_matrix(matrix, permutation,n): copy = deepcopy(matrix) for i in range(0, n): for j in range(0 , n): copy[i,j] = permutation[copy[i][j] - 1] return copy """ Creates a determinant list with the following triples, [Isotopy Class Representative, Permutation, Determinant] The Isotopy class representatives come from a file that contains all Isotopy classes. """ def create_determinant_list(file_name,n): the_list = [] permu = (Permutations(n)).list() matrices = fetch_matrices(file_name,n) for i in range(0,len(matrices)): for j in permu: copy = permute_matrix(matrices[i],j,n) the_list.append([i,j,copy.determinant()]) print(len(the_list)) return the_list # Froylan Maldonado, Jun 28 2019
Extensions
a(8) from Hugo Pfoertner, Aug 24 2019
a(9) from Hugo Pfoertner, Aug 27 2019
Comments