cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A249060 Column 1 of the triangular array at A249057.

Original entry on oeis.org

1, 4, 5, 24, 35, 192, 315, 1920, 3465, 23040, 45045, 322560, 675675, 5160960, 11486475, 92897280, 218243025, 1857945600, 4583103525, 40874803200, 105411381075, 980995276800, 2635284526875, 25505877196800, 71152682225625, 714164561510400, 2063427784543125
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2014

Keywords

Examples

			First 3 rows from A249057:
1
4    1
5    4    1,
so that a(0) = 1, a(1) = 4, a(2) = 5.
		

Crossrefs

Programs

  • Mathematica
    z = 30; p[x_, n_] := x + (n + 2)/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}];
    u = Numerator[t]; v1 = Flatten[CoefficientList[u, x]]; (* A249057 *)
    v2 = u /. x -> 1  (* A249059 *)
    v3 = u /. x -> 0  (* A249060 *)
  • PARI
    f(n) = if (n, x + (n + 3)/f(n-1), 1);
    a(n) = polcoef(numerator(f(n)), 0); \\ Michel Marcus, Nov 25 2022

Formula

From Derek Orr, Oct 21 2014: (Start)
a(2*n) = (2*n+3)*(2*n+1)!!/3, for n > 0.
a(2*n+1) = (n+2)!*2^(n+1), for n > 0.
For n > 2, if n is even, a(n)/[(n+1)*(n-1)*(n-3)*...*7*5] = n + 3 and if n is odd, a(n)/[(n+1)*(n-1)*(n-3)*...*6*4] = n + 3. (End)
a(n) = gcd_2((n+3)!,(n+3)!!), where gcd_2(b,c) denotes the second-largest common divisor of non-coprime integers b and c, as defined in A309491. - Lechoslaw Ratajczak, Apr 15 2021
D-finite with recurrence: a(n) - (3+n)*a(n-2) = 0. - Georg Fischer, Nov 25 2022
Sum_{n>=0} 1/a(n) = 3*sqrt(e*Pi/2)*erf(1/sqrt(2)) + 2*sqrt(e) - 6, where erf is the error function. - Amiram Eldar, Dec 10 2022
Showing 1-1 of 1 results.