A286941 Irregular triangle read by rows: the n-th row corresponds to the totatives of the n-th primorial, A002110(n).
1, 1, 5, 1, 7, 11, 13, 17, 19, 23, 29, 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209
Offset: 1
Examples
The triangle starts 1; 1, 5; 1, 7, 11, 13, 17, 19, 23, 29; 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209;
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..6299 (rows 1 <= n <= 6 flattened).
- Mathoverflow, Lower bound for Euler's totient for almost all integers. - _Michael De Vlieger_, May 18 2017
- Eric Weisstein's World of Mathematics, Totative. - _Michael De Vlieger_, May 18 2017
Crossrefs
Programs
-
Mathematica
Table[Function[P, Select[Range@ P, CoprimeQ[#, P] &]]@ Product[Prime@ i, {i, n}], {n, 4}] // Flatten (* Michael De Vlieger, May 18 2017 *)
-
PARI
row(n) = my(P=factorback(primes(n))); select(x->(gcd(x, P) == 1), [1..P]); \\ Michel Marcus, Jun 02 2020
Extensions
More terms from Michael De Vlieger, May 18 2017
Comments