A309557 Number triangle with T(n,k) = 2 + 3*n - 2*k + 2*k*(n-k) for n >= 0, 0 <= k <= n.
2, 5, 3, 8, 8, 4, 11, 13, 11, 5, 14, 18, 18, 14, 6, 17, 23, 25, 23, 17, 7, 20, 28, 32, 32, 28, 20, 8, 23, 33, 39, 41, 39, 33, 23, 9, 26, 38, 46, 50, 50, 46, 38, 26, 10, 29, 43, 53, 59, 61, 59, 53, 43, 29, 11, 32, 48, 60, 68, 72, 72, 68, 60, 48, 32, 12, 35, 53, 67, 77, 83, 85, 83, 77, 67, 53, 35, 13
Offset: 0
Examples
For row n=3: a(3,0)=11, a(3,1)=13, a(3,2)=11, a(3,3)=5, ... For antidiagonal r=2: T(2,0)=4, T(2,1)=11, T(2,2)=18, ... Triangle T begins: 2 5 3 8 8 4 11 13 11 5 14 18 18 14 6 17 23 25 23 17 7 20 28 32 32 28 20 8 23 33 39 41 39 33 23 9 ...
Links
- Philip K Hotchkiss, Generalized Rascal Triangles, arXiv:1907.11159 [math.HO], 2019.
Programs
-
Maple
:=proc(n,k) if n<0 or k<0 or k>n then 0; else 2+3*n -2*k +2*k*(n-k); end if;
-
Mathematica
T[n_,k_]:=2+3*n-2*k+2*k*(n-k); Table[T[n,k], {n,0,11}, {k,0,n}] // Flatten f[n_] := Table[SeriesCoefficient[(x*(-1-4*y+y^2)-2*(1-4*y+y^2))/((-1+x)^2*(-1+y)^3), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n}]; Flatten[Array[f, 12,0]] (* Stefano Spezia, Sep 08 2019 *)
Formula
By rows: a(n,k) = 2 + 3*n - 2*k + 2*k*(n-k) n >= 0, 0 <= k <= n.
By antidiagonals: T(r,k) = 2 + 3*k + r + 2*r*k, r,k >= 0.
G.f.: (x*(-1-4*y+y^2)-2*(1-4*y+y^2))/((-1+x)^2*(-1+y)^3). - Stefano Spezia, Sep 08 2019
Comments