cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067145 Shifts left under reversion.

Original entry on oeis.org

1, 1, -1, 3, -13, 69, -419, 2809, -20353, 157199, -1281993, 10963825, -97828031, 907177801, -8716049417, 86553001779, -886573220093, 9351927111901, -101447092428243, 1130357986741545, -12923637003161409, 151479552582252239, -1818756036793636033
Offset: 1

Views

Author

Christian G. Bower, Jan 03 2002

Keywords

Crossrefs

Cf. A107094.
Apart from signs, same as A088714. - Philippe Deléham, Jun 18 2006

Programs

  • Mathematica
    Nest[InverseSeries[#] x + x &, x + O[x]^2, 50][[3]] (* Vladimir Reshetnikov, Aug 07 2019 *)
  • Maxima
    T(n,m):=if n=m then 1 else m/n*sum(T(n-m,k)*(-1)^k*binomial(k+n-1,n-1), k,1,n-m); a(n):=if n=1 then 1 else T(n-1,1); /* Vladimir Kruchinin, May 06 2012 */
  • PARI
    {a(n)=local(A); if(n<1, 0, A=x+O(x^2); for(i=2,n, A=x*(1+serreverse(A))); polcoeff(A,n))} /* Michael Somos, May 21 2005 */
    

Formula

G.f. satisfies A^(-1)(x) = A(x)/x - 1.
G.f. satisfies: A(A(x)) = (1+x)*A(x) = g.f. of A107094. - Paul D. Hanna, May 12 2005
G.f. A(x) satisfies 0=f(x, A(x), A(A(x))) where f(a0,a1,a2) = a1 - a2 + a0*a1. - Michael Somos, May 21 2005
a(n) = T(n-1,1), n > 1, a(1) = 1, T(n,m) = (m/n) * Sum_{k=1..n-m} T(n-m,k) * (-1)^k * binomial(k+n-1, n-1), n > m, T(n,n) = 1. - Vladimir Kruchinin, May 06 2012

A309254 Shifts left by 2 places under series reversion.

Original entry on oeis.org

1, 1, 1, -1, 1, 1, -11, 41, -83, -77, 1621, -8503, 25689, -11283, -436307, 3380827, -15378675, 37938353, 87204085, -1755462619, 12722279385, -61250294425, 164643256457, 465385122833, -10366591960879, 88472237039417, -527994960273655, 2118908595206935, -1118896610239543
Offset: 1

Views

Author

Vladimir Reshetnikov, Aug 07 2019

Keywords

Comments

Series reversion of the g.f. gives the same sequence with two initial terms (1, 1) dropped.

Crossrefs

Programs

  • Mathematica
    Nest[InverseSeries[#] x^2 + x^2 + x &, x + O[x]^2, 14][[3]]

Formula

G.f. satisfies A((A(x) - x - x^2)/x^2) = x.
Showing 1-2 of 2 results.