cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A107094 G.f. A(x) = (1+x)*G(x) = G(G(x)) where G(x) = g.f. of A067145.

Original entry on oeis.org

0, 1, 2, 0, 2, -10, 56, -350, 2390, -17544, 136846, -1124794, 9681832, -86864206, 809349770, -7808871616, 77836952362, -800020218314, 8465353891808, -92095165316342, 1028910894313302, -11793279016419864, 138555915579090830, -1667276484211383794, 20533971488794963168
Offset: 0

Views

Author

Paul D. Hanna, May 12 2005

Keywords

Crossrefs

Cf. A067145.

Formula

G.f. satisfies: A(x) = (1+x)*A( A(x)/(1+x) )/(1+x + A(x)).

Extensions

Offset changed to 0 by Georg Fischer, Jun 07 2025

A088714 G.f. satisfies A(x) = 1 + x*A(x)^2*A(x*A(x)).

Original entry on oeis.org

1, 1, 3, 13, 69, 419, 2809, 20353, 157199, 1281993, 10963825, 97828031, 907177801, 8716049417, 86553001779, 886573220093, 9351927111901, 101447092428243, 1130357986741545, 12923637003161409, 151479552582252239
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2003, May 22 2008

Keywords

Comments

Equals row sums of triangle A291820.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 + 419*x^5 + 2809*x^6 +...
The g.f. A(x) satisfies:
x*A(x) = x + x^2*A(x) + d/dx x^4*A(x)^2/2! + d^2/dx^2 x^6*A(x)^3/3! + d^3/dx^3 x^8*A(x)^4/4! +...
The logarithm of the g.f. is given by:
log(A(x)) = x*A(x) + d/dx x^3*A(x)^2/2! + d^2/dx^2 x^5*A(x)^3/3! + d^3/dx^3 x^7*A(x)^4/4! + d^4/dx^4 x^9*A(x)^5/5! +...
From _Paul D. Hanna_, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A + x*B*C;
C = B + x*C*D;
D = C + x*D*E;
E = D + x*E*F ; ...
where variables B,C,D,E,..., are formed from successive iterations of x*A(x):
B = A(x)*A(x*A(x)), C = B*A(x*B), D = C*A(x*C), E = D*A(x*D), ...;
more explicilty,
B = 1 + 2*x + 8*x^2 + 42*x^3 + 258*x^4 + 1764*x^5 + 13070*x^6 +...,
C = 1 + 3*x + 15*x^2 + 93*x^3 + 655*x^4 + 5039*x^5 + 41453*x^6 +...,
D = 1 + 4*x + 24*x^2 + 172*x^3 + 1372*x^4 + 11796*x^5 +...,
E = 1 + 5*x + 35*x^2 + 285*x^3 + 2545*x^4 + 24255*x^5 +...,
... (End)
Related expansions:
A(x*A(x)) = 1 + x + 4*x^2 + 22*x^3 + 142*x^4 + 1016*x^5 + 7838*x^6 + 64174*x^7 + 552112*x^8 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1054*x^5 + 7039*x^6 + 50632*x^7 + 387613*x^8 +...
d/dx x^4*A(x)^2/2! = 2*x^3 + 5*x^4 + 21*x^5 + 112*x^6 + 692*x^7 + 4743*x^8 +...
d^2/dx^2 x^6*A(x)^3/3! = 5*x^4 + 21*x^5 + 112*x^6 + 696*x^7 + 4815*x^8 +...
d^3/dx^3 x^8*A(x)^4/4! = 14*x^5 + 84*x^6 + 540*x^7 + 3795*x^8 +...
d^4/dx^4 x^10*A(x)^5/5! = 42*x^6 + 330*x^7 + 2475*x^8 + 19305*x^9 +...
...
d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n! = A000108(n)*x^(n+1) +...
		

Crossrefs

Apart from signs, same as A067145. - Philippe Deléham, Jun 18 2006

Programs

  • Mathematica
    m = 21; A[] = 1; Do[A[x] = 1 + x A[x]^2 A[x A[x]] + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n++; A = x + O(x^2); for(i=2, n, A = x / (1 - subst(A, x, A))); polcoeff(A, n))}; /* Michael Somos, May 21 2005 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x+O(x^2); for(i=1,n, A=1/(1-x*A*subst(A,x,x*A)));polcoeff(A,n))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x+O(x^2);for(i=0,n, A=(1/x)*serreverse(x-x^2*A));polcoeff(A,n))}
    
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+k+m,k)/(n+k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
    
  • PARI
    /* n-th Derivative: */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    /* G.f.: [Paul D. Hanna, Dec 18 2010] */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*A^m/m!))+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* n-th Derivative: */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    /* G.f.: [Paul D. Hanna, May 31 2012] */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=1+(1/x)*sum(m=1, n+1, Dx(m-1, x^(2*m)*A^m/m!))+x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies:
(1) A(x) = (1/x)*Series_Reversion(x - x^2*A(x)).
(2) A(x) = 1 + (1/x)*Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n!.
(3) A(x) = exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*A(x)^n/n! ).
(4) A(x) = 1/(1 - x*A(x)*A(x*A(x))).
(5) A(x) = f(x*A(x)) = (1-1/f(x))/x where f(x) is the g.f. of A088713.
Given g.f. A(x), then B(x) = x*A(x) satisfies 0 = f(x, B(x), B(B(x))) where f(a0, a1, a2) = a0 - a1 + a1*a2. - Michael Somos, May 21 2005
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+k+m,k)/(n+k+m) * a(n-k,k).
(End)
a(n) = Sum_{k=0..n} A291820(n+1,k). - Paul D. Hanna, Sep 01 2017

A120970 G.f. A(x) satisfies A(x/A(x)^2) = 1 + x ; thus A(x) = 1 + Series_Reversion(x/A(x)^2).

Original entry on oeis.org

1, 1, 2, 9, 60, 504, 4946, 54430, 655362, 8496454, 117311198, 1711459903, 26228829200, 420370445830, 7021029571856, 121859518887327, 2192820745899978, 40831103986939664, 785429260324068156, 15585831041632684997, 318649154587152781210, 6704504768568697046504
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Comments

From Paul D. Hanna, Nov 16 2008: (Start)
More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then
A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);
thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1. (End)

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
Related expansions.
A(x)^2 = 1 + 2*x + 5*x^2 + 22*x^3 + 142*x^4 + 1164*x^5 + 11221*x^6 + ...
A(A(x)-1) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 + ...
A(A(x)-1)^2 = 1 + 2*x + 9*x^2 + 60*x^3 + 504*x^4 + 4946*x^5 + ...
x/A(x)^2 = x - 2*x^2 - x^3 - 10*x^4 - 73*x^5 - 662*x^6 - 6842*x^7 - ...
Series_Reversion(x/A(x)^2) = x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
To illustrate the formula a(n) = [x^(n-1)] 2*A(x)^(2*n)/(2*n),
form a table of coefficients in A(x)^(2*n) as follows:
  A^2:  [(1), 2,   5,   22,   142,   1164,   11221,   121848, ...];
  A^4:  [ 1, (4), 14,   64,   397,   3116,   29002,   306468, ...];
  A^6:  [ 1,  6, (27), 134,   825,   6270,   56492,   580902, ...];
  A^8:  [ 1,  8,  44, (240), 1502,  11200,   98144,   983016, ...];
  A^10: [ 1, 10,  65,  390, (2520), 18672,  160115,  1565260, ...];
  A^12: [ 1, 12,  90,  592,  3987, (29676), 250730,  2399388, ...];
  A^14: [ 1, 14, 119,  854,  6027,  45458, (381010), 3582266, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[2/2*(1), 2/4*(4), 2/6*(27), 2/8*(240), 2/10*(2520), 2/12*(29676), ...].
		

Crossrefs

Cf. related variants: A145347, A145348, A147664, A145349, A145350. - Paul D. Hanna, Nov 16 2008
Cf. A381602.

Programs

  • Mathematica
    terms = 21; A[] = 1; Do[A[x] = 1 + x*A[A[x] - 1]^2 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^2))[ #A]);A[n+1]}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* This sequence is generated when k=2, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n,k=2,m=0)=local(A=sum(i=0,n-1,a(i,k,m)*x^i));if(n==0,1,polcoeff((m+k)/(m+k*n)*A^(m+k*n),n-1))} \\ Paul D. Hanna, Nov 16 2008
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*b(n-j, 2*j)));
    a(n) = if(n==0, 1, b(n-1, 2)); \\ Seiichi Manyama, Jun 04 2025

Formula

G.f. satisfies: A(x) = 1 + x*A(A(x) - 1)^2.
Let B(x) be the g.f. of A120971, then B(x) and g.f. A(x) are related by:
(a) B(x) = A(A(x)-1),
(b) B(x) = A(x*B(x)^2),
(c) A(x) = B(x/A(x)^2),
(d) A(x) = 1 + x*B(x)^2,
(e) B(x) = 1 + x*B(x)^2*B(A(x)-1)^2,
(f) A(B(x)-1) = B(A(x)-1) = B(x*B(x)^2).
a(n) = [x^(n-1)] (1/n)*A(x)^(2n) for n>=1 with a(0)=1; i.e., a(n) equals 1/n times the coefficient of x^(n-1) in A(x)^(2n) for n>=1. [Paul D. Hanna, Nov 16 2008]
From Seiichi Manyama, Jun 04 2025: (Start)
Let b(n,k) = [x^n] B(x)^k, where B(x) is the g.f. of A120971.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(2*n+k,j)/(2*n+k) * b(n-j,2*j).
a(n) = b(n-1,2) for n > 0. (End)

A120972 G.f. A(x) satisfies A(x/A(x)^3) = 1 + x ; thus A(x) = 1 + series_reversion(x/A(x)^3).

Original entry on oeis.org

1, 1, 3, 21, 217, 2814, 42510, 718647, 13270944, 263532276, 5567092665, 124143735663, 2905528740060, 71058906460091, 1809695198254281, 47861102278428198, 1311488806252697283, 37164457324943708739, 1087356593493807164289, 32801308084353988297404
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Comments

More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then
A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);
thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
Related expansions.
A(x)^3 = 1 + 3*x + 12*x^2 + 82*x^3 + 813*x^4 + 10212*x^5 + 150699*x^6 +...
A(A(x)-1) = 1 + x + 6*x^2 + 60*x^3 + 776*x^4 + 11802*x^5 + 201465*x^6 +...
A(A(x)-1)^3 = 1 + 3*x + 21*x^2 + 217*x^3 + 2814*x^4 + 42510*x^5 +...
x/A(x)^3 = x - 3*x^2 - 3*x^3 - 37*x^4 - 420*x^5 - 5823*x^6 -...
Series_Reversion(x/A(x)^3) = x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
To illustrate the formula a(n) = [x^(n-1)] 3*A(x)^(3*n)/(3*n),
form a table of coefficients in A(x)^(3*n) as follows:
  A^3:  [(1), 3,  12,   82,    813,   10212,   150699,   2503233, ...];
  A^6:  [ 1, (6), 33,  236,   2262,   27270,   388906,   6289080, ...];
  A^9:  [ 1,  9, (63), 489,   4671,   54684,   756012,  11904813, ...];
  A^12: [ 1, 12, 102, (868),  8445,   97260,  1310040,  20112516, ...];
  A^15: [ 1, 15, 150, 1400, (14070), 161343,  2130505,  31961175, ...];
  A^18: [ 1, 18, 207, 2112,  22113, (255060), 3324003,  48876264, ...];
  A^21: [ 1, 21, 273, 3031,  33222,  388563, (5030529), 72769014, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[3/3*(1), 3/6*(6), 3/9*(63), 3/12*(868), 3/15*(14070), 3/18*(255060), ...].
		

Crossrefs

Programs

  • Mathematica
    terms = 18; A[] = 1; Do[A[x] = 1 + x*A[A[x] - 1]^3 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^3))[ #A]);A[n+1]}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*subst(A^3,x,A-1+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    /* This sequence is generated when k=3, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */
    {a(n, k=3, m=0)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*b(n-j, 3*j)));
    a(n) = if(n==0, 1, b(n-1, 3)); \\ Seiichi Manyama, Jun 04 2025

Formula

G.f. satisfies: A(x) = 1 + x*A(A(x) - 1)^3.
a(n) = [x^(n-1)] A(x)^(3*n)/n for n>=1 with a(0)=1; i.e., a(n) equals the coefficient of x^(n-1) in A(x)^(3*n)/n for n>=1 (see comment).
Let B(x) be the g.f. of A120973, then B(x) and g.f. A(x) are related by:
(a) B(x) = A(A(x)-1),
(b) B(x) = A(x*B(x)^3),
(c) A(x) = B(x/A(x)^3),
(d) A(x) = 1 + x*B(x)^3,
(e) B(x) = 1 + x*B(x)^3*B(A(x)-1)^3,
(f) A(B(x)-1) = B(A(x)-1) = B(x*B(x)^3).
From Seiichi Manyama, Jun 04 2025: (Start)
Let b(n,k) = [x^n] B(x)^k, where B(x) is the g.f. of A120973.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(3*n+k,j)/(3*n+k) * b(n-j,3*j).
a(n) = b(n-1,3) for n > 0. (End)

A120974 G.f. A(x) satisfies A(x/A(x)^4) = 1 + x; thus A(x) = 1 + series_reversion(x/A(x)^4).

Original entry on oeis.org

1, 1, 4, 38, 532, 9329, 190312, 4340296, 108043128, 2890318936, 82209697588, 2467155342740, 77676395612884, 2554497746708964, 87449858261161216, 3107829518797739032, 114399270654847628768, 4353537522757357068296, 171010040645759712226048
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Crossrefs

Programs

  • Maple
    A:= x -> 1:
    for m from 1 to 30 do
      Ap:= unapply(A(x)+c*x^m,x);
      S:= series(Ap(x/Ap(x)^4)-1-x, x, m+1);
      cs:= solve(convert(S,polynom),c);
      A:= subs(c=cs, eval(Ap));
    od:
    seq(coeff(A(x),x,m),m=0..30);# Robert Israel, Oct 25 2019
  • Mathematica
    nmax = 17; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[ A[x/A[x]^4] - 1 - x + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^4))[ #A]);A[n+1]}
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(4*n+k, j)/(4*n+k)*b(n-j, 4*j)));
    a(n) = if(n==0, 1, b(n-1, 4)); \\ Seiichi Manyama, Jun 04 2025

Formula

G.f. satisfies: A(x) = 1 + x*B(x)^4 = 1 + (1 + x*C(x)^4 )^4 where B(x) and C(x) satisfy: C(x) = B(x)*B(A(x)-1), B(x) = A(A(x)-1), B(A(x)-1) = A(B(x)-1), B(x/A(x)^4) = A(x), B(x) = A(x*B(x)^4) and B(x) is g.f. of A120975.
From Seiichi Manyama, Jun 04 2025: (Start)
Let b(n,k) = [x^n] B(x)^k, where B(x) is the g.f. of A120975.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(4*n+k,j)/(4*n+k) * b(n-j,4*j).
a(n) = b(n-1,4) for n > 0. (End)

A120976 G.f. A(x) satisfies A(x/A(x)^5) = 1 + x ; thus A(x) = 1 + series_reversion(x/A(x)^5).

Original entry on oeis.org

1, 1, 5, 60, 1060, 23430, 602001, 17281760, 541258390, 18210836060, 651246905140, 24566101401035, 971933892729980, 40156993344526860, 1726753293393763625, 77065076699967844390, 3561820706538663354320, 170162336673835615653925, 8389644485709060522744640
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^5))[ #A]);A[n+1]}
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(5*n+k, j)/(5*n+k)*b(n-j, 5*j)));
    a(n) = if(n==0, 1, b(n-1, 5)); \\ Seiichi Manyama, Jun 04 2025

Formula

G.f. satisfies: A(x) = 1 + x*B(x)^5 = 1 + (1 + x*C(x)^5 )^5 where B(x) and C(x) satisfy: C(x) = B(x)*B(A(x)-1), B(x) = A(A(x)-1), B(A(x)-1) = A(B(x)-1), B(x/A(x)^5) = A(x), B(x) = A(x*B(x)^5) and B(x) is g.f. of A120977.
From Seiichi Manyama, Jun 04 2025: (Start)
Let b(n,k) = [x^n] B(x)^k, where B(x) is the g.f. of A120977.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(5*n+k,j)/(5*n+k) * b(n-j,5*j).
a(n) = b(n-1,5) for n > 0. (End)

A309254 Shifts left by 2 places under series reversion.

Original entry on oeis.org

1, 1, 1, -1, 1, 1, -11, 41, -83, -77, 1621, -8503, 25689, -11283, -436307, 3380827, -15378675, 37938353, 87204085, -1755462619, 12722279385, -61250294425, 164643256457, 465385122833, -10366591960879, 88472237039417, -527994960273655, 2118908595206935, -1118896610239543
Offset: 1

Views

Author

Vladimir Reshetnikov, Aug 07 2019

Keywords

Comments

Series reversion of the g.f. gives the same sequence with two initial terms (1, 1) dropped.

Crossrefs

Programs

  • Mathematica
    Nest[InverseSeries[#] x^2 + x^2 + x &, x + O[x]^2, 14][[3]]

Formula

G.f. satisfies A((A(x) - x - x^2)/x^2) = x.

A309564 Shifts left by 3 places under series reversion.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, -1, 3, -15, 59, -189, 567, -1863, 7141, -29817, 125919, -528329, 2238303, -9769917, 44312225, -208177669, 1005840685, -4972561375, 25105651267, -129470605611, 682486916465, -3678964401327, 20276967904907, -114199064797229, 656666370592173
Offset: 1

Views

Author

Vladimir Reshetnikov, Aug 08 2019

Keywords

Comments

Series reversion of the g.f. gives the same sequence with three initial terms (1, 1, 1) dropped.

Crossrefs

Programs

  • Mathematica
    Nest[InverseSeries[#] x^3 + x^3 + x^2 + x &, x + O[x]^2, 10][[3]]

Formula

G.f. satisfies A((A(x) - x - x^2 - x^3)/x^3) = x.

A309637 G.f. satisfies A((A(x) - x)/x^2) = x, this sequence gives the coefficients at odd powers only.

Original entry on oeis.org

1, 1, -1, 4, -24, 179, -1542, 14779, -154147, 1724785, -20499916, 256971448, -3379187370, 46424470573, -664168673391, 9868894159044, -151977742507208, 2421172940293208, -39841228681799385, 676261674504977841, -11826431722547287115, 212855326803518472588, -3938986085164523720874
Offset: 1

Views

Author

Vladimir Reshetnikov, Aug 10 2019

Keywords

Comments

The g.f. given by A((A(x) - x)/x^2) = x generates aerated sequence [1, 0, 1, 0, -1, 0, 4, 0, -24, ...], which shifts left by 2 places under g.f. series reversion. In this it is similar to A309254, but unlike A309254 (which starts with [1, 1, ...]), this aerated sequence starts with [1, 0, ...].

Examples

			The series reversion of x + x^3 - x^5 + 4*x^7 - 24*x^9 + ... is x - x^3 + 4*x^5 - 24*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    Nest[InverseSeries[#] x^2 + x &, x + O[x]^2, 30][[3, ;; ;; 2]]
Showing 1-9 of 9 results.