cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309600 Digits of the 10-adic integer (17/9)^(1/3).

Original entry on oeis.org

7, 1, 6, 8, 7, 0, 3, 3, 3, 6, 5, 2, 7, 8, 7, 2, 6, 7, 1, 1, 0, 3, 3, 2, 4, 5, 6, 5, 3, 6, 5, 3, 3, 3, 7, 5, 2, 4, 7, 5, 0, 2, 9, 0, 6, 7, 0, 8, 8, 6, 6, 7, 0, 1, 2, 4, 5, 3, 2, 8, 6, 9, 7, 3, 1, 6, 6, 9, 5, 0, 1, 6, 4, 6, 8, 0, 3, 8, 5, 9, 6, 1, 3, 5, 3, 7, 9, 7, 2, 3, 6, 6, 9, 0, 0, 0, 5, 3, 7, 7, 2
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2019

Keywords

Examples

			      7^3 == 3      (mod 10).
     17^3 == 13     (mod 10^2).
    617^3 == 113    (mod 10^3).
   8617^3 == 1113   (mod 10^4).
  78617^3 == 11113  (mod 10^5).
  78617^3 == 111113 (mod 10^6).
		

Crossrefs

10-adic integer x.
A225404 (x^3 = ...000003).
A225405 (x^3 = ...000007).
A225406 (x^3 = ...000009).
A153042 (x^3 = ...111111).
this sequence (x^3 = ...111113).
A309601 (x^3 = ...111117).
A309602 (x^3 = ...111119).
A309603 (x^3 = ...222221).
A225410 (x^3 = ...222223).
A309604 (x^3 = ...222227).
A309605 (x^3 = ...222229).
A309606 (x^3 = ...333331).
A225402 (x^3 = ...333333).
A309569 (x^3 = ...333337).
A309570 (x^3 = ...333339).
A309595 (x^3 = ...444441).
A309608 (x^3 = ...444443).
A309609 (x^3 = ...444447).
A309610 (x^3 = ...444449).
A309611 (x^3 = ...555551).
A309612 (x^3 = ...555553).
A309613 (x^3 = ...555557).
A309614 (x^3 = ...555559).
A309640 (x^3 = ...666661).
A309641 (x^3 = ...666663).
A225411 (x^3 = ...666667).
A309642 (x^3 = ...666669).
A309643 (x^3 = ...777771).
A309644 (x^3 = ...777773).
A225401 (x^3 = ...777777).
A309645 (x^3 = ...777779).
A309646 (x^3 = ...888881).
A309647 (x^3 = ...888883).
A309648 (x^3 = ...888887).
A225412 (x^3 = ...888889).
A225409 (x^3 = ...999991).
A225408 (x^3 = ...999993).
A225407 (x^3 = ...999997).

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((17/9+O(2^N))^(1/3), 2^N), Mod((17/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309600(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 - 17)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309600(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 17) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A309569 Digits of the 10-adic integer (11/3)^(1/3).

Original entry on oeis.org

3, 3, 2, 2, 5, 8, 6, 8, 3, 1, 7, 3, 2, 6, 1, 0, 0, 1, 3, 2, 5, 3, 3, 5, 5, 5, 0, 8, 8, 9, 0, 9, 1, 7, 3, 2, 9, 4, 3, 9, 9, 8, 3, 3, 0, 1, 4, 2, 7, 6, 9, 5, 1, 5, 9, 3, 2, 5, 3, 7, 3, 1, 4, 8, 9, 7, 0, 1, 9, 1, 1, 4, 1, 4, 7, 4, 9, 0, 7, 7, 1, 2, 4, 9, 3, 4, 3, 8, 0, 8, 1, 8, 9, 8, 3, 5, 5, 1, 9, 2
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       3^3 == 7      (mod 10).
      33^3 == 37     (mod 10^2).
     233^3 == 337    (mod 10^3).
    2233^3 == 3337   (mod 10^4).
   52233^3 == 33337  (mod 10^5).
  852233^3 == 333337 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((11/3+O(2^N))^(1/3), 2^N), Mod((11/3+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309569(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 9 * (3 * a ** 3 - 11)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309569(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 - 11) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
Showing 1-2 of 2 results.