A309944 Numbers m such that if m = p_1^e_1 * ... * p_k^e_k, where p_1 < ... < p_k are primes, then for all i < k, p_i = A000720(p_{i+1}).
6, 12, 15, 18, 24, 30, 36, 45, 48, 54, 55, 60, 72, 75, 90, 96, 108, 119, 120, 135, 144, 150, 162, 165, 180, 192, 216, 225, 240, 270, 275, 288, 300, 324, 330, 341, 360, 375, 384, 405, 432, 450, 480, 486, 495, 533, 540, 576, 600, 605, 648, 660, 675, 720, 750, 768
Offset: 1
Keywords
Examples
330 is in the sequence because the prime factors are {2, 3, 5, 11} with 3 = prime(2), 5 = prime(3) and 11 = prime(5). 1299210 is in the sequence because the prime factors are {2, 3, 5, 11, 31, 127} with 3 = prime(2), 5 = prime(3), 11 = prime(5), 31 = prime(11) and 127 = prime(31).
Programs
-
Magma
sol:=[]; s:=1; for m in [2..1000] do v:=PrimeDivisors(m); if #v ge 2 then nr:=0; for k in [2..#v] do if v[k] eq NthPrime(v[k-1]) then nr:=nr+1; end if; end for; if nr eq #v-1 then sol[s]:=m;s:=s+1; end if; end if; end for; sol; // Marius A. Burtea, Aug 24 2019
-
Maple
with(numtheory):nn:=10^3: for n from 1 to nn do: d:=factorset(n):n0:=nops(d):it:=0: if n0>1 then for i from 2 to n0 do : if d[i]=ithprime(d[i-1]) then it:=it+1: else fi: od: if it=n0-1 then printf(`%d, `,n): else fi:fi: od:
-
Mathematica
aQ[n_] := (m = Length[(p = FactorInteger[n][[;; , 1]])]) > 1 && NestList[Prime@# &, p[[1]], m - 1] == p; Select[Range[770], aQ] (* Amiram Eldar, Aug 24 2019 *)
-
PARI
isok(m) = {my(f=factor(m)[,1]~); if (#f < 2, return(0)); for (i=2, #f, if (f[i] != prime(f[i-1]), return (0));); return (1);} \\ Michel Marcus, Aug 25 2019
Extensions
Edited by N. J. A. Sloane, Oct 05 2019, using definition suggested by Antti Karttunen, Aug 24 2019
Comments