cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309944 Numbers m such that if m = p_1^e_1 * ... * p_k^e_k, where p_1 < ... < p_k are primes, then for all i < k, p_i = A000720(p_{i+1}).

Original entry on oeis.org

6, 12, 15, 18, 24, 30, 36, 45, 48, 54, 55, 60, 72, 75, 90, 96, 108, 119, 120, 135, 144, 150, 162, 165, 180, 192, 216, 225, 240, 270, 275, 288, 300, 324, 330, 341, 360, 375, 384, 405, 432, 450, 480, 486, 495, 533, 540, 576, 600, 605, 648, 660, 675, 720, 750, 768
Offset: 1

Views

Author

Michel Lagneau, Aug 24 2019

Keywords

Comments

Numbers m such that for all k, d(k) = prime(d(k-1)), where d(k) is the k-th prime factor of m.
The primitive subsequence b(k), k = 1, 2, ... begins with 6, 15, 30, 55, 110, 165, 330, 341, 533, ... because if d(i) is the i-th prime factor of b(k), so b(k)*d(i)^m is in the sequence, m = 0, 1, 2, ...
Numbers m such that if m = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then for all i > 1, p_i = A000040(p_{i-1}). - Antti Karttunen, Aug 24 2019

Examples

			330 is in the sequence because the prime factors are {2, 3, 5, 11} with 3 = prime(2), 5 = prime(3) and 11 = prime(5).
1299210 is in the sequence because the prime factors are {2, 3, 5, 11, 31, 127} with 3 = prime(2), 5 = prime(3), 11 = prime(5), 31 = prime(11) and 127 = prime(31).
		

Crossrefs

Programs

  • Magma
    sol:=[]; s:=1; for m in [2..1000] do v:=PrimeDivisors(m);  if #v ge 2 then nr:=0; for k in [2..#v] do  if v[k] eq NthPrime(v[k-1])  then nr:=nr+1;  end if; end for; if nr eq #v-1 then sol[s]:=m;s:=s+1; end if; end if; end for;  sol; // Marius A. Burtea, Aug 24 2019
    
  • Maple
    with(numtheory):nn:=10^3:
    for n from 1 to nn do:
    d:=factorset(n):n0:=nops(d):it:=0:
      if n0>1
      then
      for i from 2 to n0 do :
       if d[i]=ithprime(d[i-1])
        then
        it:=it+1:
        else fi:
       od:
        if it=n0-1
        then
        printf(`%d, `,n):
        else fi:fi:
    od:
  • Mathematica
    aQ[n_] := (m = Length[(p = FactorInteger[n][[;; , 1]])]) > 1 && NestList[Prime@# &, p[[1]], m - 1] == p; Select[Range[770], aQ] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    isok(m) = {my(f=factor(m)[,1]~); if (#f < 2, return(0)); for (i=2, #f, if (f[i] != prime(f[i-1]), return (0));); return (1);} \\ Michel Marcus, Aug 25 2019

Extensions

Edited by N. J. A. Sloane, Oct 05 2019, using definition suggested by Antti Karttunen, Aug 24 2019