A320222
Number of unlabeled rooted trees with n nodes in which the non-leaf branches directly under any given node are all equal.
Original entry on oeis.org
1, 1, 2, 4, 9, 18, 39, 78, 161, 324, 658, 1316, 2657, 5314, 10668, 21347, 42777, 85554, 171290, 342580, 685498, 1371037, 2742733, 5485466, 10972351, 21944711, 43892080, 87784323, 175574004, 351148008, 702307038, 1404614076, 2809249582, 5618499824, 11237042426
Offset: 1
The a(1) = 1 through a(6) = 18 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(((o))) (oo(o)) (oo(oo))
(((oo))) (ooo(o))
((o)(o)) (((ooo)))
((o(o))) ((o(oo)))
(o((o))) ((oo(o)))
((((o)))) (o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(o(((o))))
(((((o)))))
Cf.
A002541,
A003238,
A010766,
A126656,
A014668,
A167865,
A214577,
A316782,
A317099,
A317100,
A317712,
A320230.
-
saue[n_]:=Sum[If[SameQ@@DeleteCases[ptn,1],If[DeleteCases[ptn,1]=={},1,saue[DeleteCases[ptn,1][[1]]]],0],{ptn,IntegerPartitions[n-1]}];
Table[saue[n],{n,15}]
-
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=2, n-1, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018
A320268
Number of unlabeled series-reduced rooted trees with n nodes where the non-leaf branches directly under any given node are all equal.
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 6, 9, 16, 26, 44, 70, 119, 189, 314, 506, 830, 1336, 2186, 3522, 5737, 9266, 15047, 24313, 39444, 63759, 103322, 167098, 270616, 437714, 708676, 1146390, 1855582, 3002017, 4858429, 7860454, 12720310, 20580764, 33303260, 53884144, 87190964
Offset: 1
The a(3) = 1 through a(8) = 9 rooted trees:
(oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
(o(oo)) (o(ooo)) (o(oooo)) (o(ooooo))
(oo(oo)) (oo(ooo)) (oo(oooo))
(ooo(oo)) (ooo(ooo))
((oo)(oo)) (oooo(oo))
(o(o(oo))) (o(o(ooo)))
(o(oo)(oo))
(o(oo(oo)))
(oo(o(oo)))
Cf.
A001678,
A002541,
A003238,
A010766,
A070776,
A014668,
A126656,
A167865,
A317099,
A317100,
A317712,
A320222,
A320226,
A320269.
-
saum[n_]:=Sum[If[DeleteCases[ptn,1]=={},1,saum[DeleteCases[ptn,1][[1]]]],{ptn,Select[IntegerPartitions[n-1],And[Length[#]!=1,SameQ@@DeleteCases[#,1]]&]}];
Array[saum,20]
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=3, n, v[n] = 1 + sum(k=2, n-2, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018
A317099
Number of series-reduced planted achiral trees whose leaves span an initial interval of positive integers appearing with multiplicities an integer partition of n.
Original entry on oeis.org
1, 3, 4, 9, 8, 19, 16, 35, 35, 54, 57, 113, 102, 155, 189, 279, 298, 447, 491, 702, 813, 1063, 1256, 1759, 1967, 2542, 3050, 3902, 4566, 5882, 6843, 8676, 10205, 12612, 14908, 18608, 21638, 26510, 31292, 38150, 44584, 54185, 63262, 76308, 89371, 106818, 124755
Offset: 1
The a(4) = 9 trees:
(1111), ((11)(11)), (((1)(1))((1)(1))), ((1)(1)(1)(1)),
(1112),
(1122), ((12)(12)),
(1123),
(1234).
The a(6) = 19 trees:
(111111), ((111)(111)), (((1)(1)(1))((1)(1)(1))), ((11)(11)(11)), (((1)(1))((1)(1))((1)(1))), ((1)(1)(1)(1)(1)(1)),
(111112),
(111122), ((112)(112)),
(111123),
(111222), ((12)(12)(12)),
(111223),
(111234),
(112233), ((123)(123)),
(112234),
(112345),
(123456).
Cf.
A001678,
A003238,
A052409,
A052410,
A067824,
A167865,
A168532,
A214577,
A289078,
A294336,
A316782,
A317100.
-
b[n_]:=1+Sum[b[n/d],{d,Rest[Divisors[n]]}];
a[n_]:=Sum[b[GCD@@Length/@Split[ptn]],{ptn,IntegerPartitions[n]}];
Array[a,30]
Showing 1-3 of 3 results.
Comments