A317390 A(n,k) is the n-th positive integer that has exactly k representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes; square array A(n,k), n>=1, k>=0, read by antidiagonals.
2, 1, 5, 25, 3, 7, 43, 29, 4, 11, 211, 61, 37, 6, 15, 638, 261, 91, 40, 8, 23, 664, 848, 421, 111, 41, 9, 26, 1613, 1956, 921, 426, 121, 49, 10, 27, 2991, 3321, 2058, 969, 441, 124, 51, 12, 28, 7021, 3004, 3336, 2092, 1002, 484, 171, 52, 13, 31, 11306, 7162, 3319, 3368, 2094, 1026, 535, 184, 67, 14, 33
Offset: 1
Examples
A(6,2) = 49: 1 + 3 * (1 + 5 * (1 + 2)) = 1 + 2 * (1 + 23) = 49. Square array A(n,k) begins: 2, 1, 25, 43, 211, 638, 664, 1613, 2991, ... 5, 3, 29, 61, 261, 848, 1956, 3321, 3004, ... 7, 4, 37, 91, 421, 921, 2058, 3336, 3319, ... 11, 6, 40, 111, 426, 969, 2092, 3368, 3554, ... 15, 8, 41, 121, 441, 1002, 2094, 3741, 3928, ... 23, 9, 49, 124, 484, 1026, 2283, 3914, 4846, ... 26, 10, 51, 171, 535, 1106, 2381, 3979, 5552, ... 27, 12, 52, 184, 540, 1156, 2388, 4082, 5886, ... 28, 13, 67, 187, 591, 1191, 2432, 4126, 6293, ...
Links
Crossrefs
Programs
-
Maple
b:= proc(n, s) option remember; `if`(n=1, 1, add(b((n-1)/p, s union {p}) , p=numtheory[factorset](n-1) minus s)) end: A:= proc() local h, p, q; p, q:= proc() [] end, 0; proc(n, k) while nops(p(k))
-
Mathematica
b[n_, s_List] := b[n, s] = If[n == 1, 1, Sum[If[p == 1, 0, b[(n - 1)/p, s ~Union~ {p}]], {p, FactorInteger[n - 1][[All, 1]] ~Complement~ s}]]; A[n_, k_] := Module[{h, p, q = 0}, p[_] = {}; While[Length[p[k]] < n, q = q + 1; h = b[q, {}]; p[h] = Append[p[h], q]]; p[k][[n]]]; Table[Table[A[n, d - n], {n, 1, d}], {d, 1, 11}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
Formula
A317241(A(n,k)) = k.