A317489 Irregular triangle read by rows. For n >= 3 and 1 <= k <= floor(n/3), T(n,k) is the number of palindromic compositions of n into k parts of size at least 3.
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 3, 2, 1, 0, 4, 0, 1, 1, 1, 4, 3, 1, 1, 0, 5, 0, 3, 1, 1, 5, 4, 3, 1, 1, 0, 6, 0, 6, 0, 1, 1, 6, 5, 6, 3, 1, 0, 7, 0, 10, 0, 1, 1, 1, 7, 6, 10, 6, 1, 1, 0, 8, 0, 15, 0, 4, 1, 1, 8, 7, 15, 10, 4, 1, 1, 0, 9, 0, 21, 0, 10, 0, 1, 1, 9, 8, 21, 15, 10, 4, 1, 0, 10, 0, 28, 0, 20, 0, 1, 1, 1, 10, 9, 28, 21, 20, 10, 1, 1, 0, 11, 0, 36, 0, 35, 0, 5
Offset: 3
Examples
For n=24 and k=3, T(24,3) = 8 = binomial((24-2)/2-3, (3-1)/2) = binomial(8,1). The first entries of the irregular triangle formed by the values of T(n,k) are: 1; 1; 1; 1, 1; 1, 0; 1, 1; 1, 0, 1; 1, 1, 1; 1, 0, 2; 1, 1, 2, 1; 1, 0, 3, 0; 1, 1, 3, 2; 1, 0, 4, 0, 1; 1, 1, 4, 3, 1; 1, 0, 5, 0, 3; 1, 1, 5, 4, 3, 1; 1, 0, 6, 0, 6, 0; 1, 1, 6, 5, 6, 3; 1, 0, 7, 0, 10, 0, 1; 1, 1, 7, 6, 10, 6, 1; 1, 0, 8, 0, 15, 0, 4; 1, 1, 8, 7, 15, 10, 4, 1; 1, 0, 9, 0, 21, 0, 10, 0; 1, 1, 9, 8, 21, 15, 10, 4; 1, 0, 10, 0, 28, 0, 20, 0, 1; 1, 1, 10, 9, 28, 21, 20, 10, 1; 1, 0, 11, 0, 36, 0, 35, 0, 5;
Crossrefs
Row sums of the triangle equal A226916(n+4).
Programs
-
Mathematica
T[n_, k_] := If[Mod[n, 2] == 1 && Mod[k, 2] == 0, 0, Binomial[Quotient[n-1, 2] - k, Quotient[k-1, 2]]]; Table[T[n, k], {n, 3, 30}, {k, 1, Quotient[n, 3]}] // Flatten (* Jean-François Alcover, Sep 13 2018, from PARI *)
-
PARI
T(n,k)=if(n%2==1&&k%2==0, 0, binomial((n-1)\2-k, (k-1)\2)); \\ Andrew Howroyd, Sep 07 2018
Formula
T(n,k) = 0 if n is odd and k is even;
T(n,k) = binomial((n-1)/2-k,(k-1)/2) if n is odd and k is odd;
T(n,k) = binomial((n-2)/2-k,(k-1)/2) if n is even and k is odd;
T(n,k) = binomial((n-2)/2-k,(k-2)/2) if n is even and k is even.