A317528 Expansion of Sum_{k>=1} mu(k)^2*x^k/(1 + x^k), where mu() is the Moebius function (A008683).
1, 0, 2, -2, 2, 0, 2, -2, 2, 0, 2, -4, 2, 0, 4, -2, 2, 0, 2, -4, 4, 0, 2, -4, 2, 0, 2, -4, 2, 0, 2, -2, 4, 0, 4, -4, 2, 0, 4, -4, 2, 0, 2, -4, 4, 0, 2, -4, 2, 0, 4, -4, 2, 0, 4, -4, 4, 0, 2, -8, 2, 0, 4, -2, 4, 0, 2, -4, 4, 0, 2, -4, 2, 0, 4, -4, 4, 0, 2, -4, 2, 0, 2, -8, 4, 0, 4, -4, 2, 0, 4, -4, 4, 0, 4
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Maple
with(numtheory): seq(coeff(series(add(mobius(k)^2*x^k/(1+x^k),k=1..n), x,n+1),x,n),n=1..120); # Muniru A Asiru, Jul 30 2018
-
Mathematica
nmax = 95; Rest[CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]] nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + MoebiusMu[k]^2 x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]] Table[DivisorSum[n, (-1)^(n/# + 1) &, SquareFreeQ[#] &], {n, 95}] f[p_, e_] := 2; f[2, e_] := If[e == 1, 0, -2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 19 2022 *)
-
PARI
A317528(n) = sumdiv(n,d,((-1)^(1+d))*issquarefree(n/d)); \\ Antti Karttunen, Dec 05 2021
Formula
L.g.f.: log(Product_{k>=1} (1 + mu(k)^2*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A008966(d).
If n is odd, a(n) = A034444(n).
Multiplicative with a(2) = 0, a(2^e) = -2 for e>1, and a(p^e) = 2 for p>2 and e>=1. - Amiram Eldar, Nov 19 2022