cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317633 Numbers congruent to {1, 7, 9} mod 10.

Original entry on oeis.org

1, 7, 9, 11, 17, 19, 21, 27, 29, 31, 37, 39, 41, 47, 49, 51, 57, 59, 61, 67, 69, 71, 77, 79, 81, 87, 89, 91, 97, 99, 101, 107, 109, 111, 117, 119, 121, 127, 129, 131, 137, 139, 141, 147, 149, 151, 157, 159, 161, 167, 169
Offset: 1

Views

Author

Paul Curtz, Aug 02 2018

Keywords

Comments

When multiplied by 10, one gets the numbers ending in "dix" in French (10, 70, 90, 110, ...).

Examples

			G.f. = x + 7*x^2 + 9*x^3+ 11*x^4 + 17*x^5 + 19*x^6 + 21*x^7 + 27*x^8 + ... - _Michael Somos_, Aug 19 2018
		

Crossrefs

Programs

  • Magma
    [n: n in [0..170]|n mod 10 in {1, 7, 9}]; // Vincenzo Librandi, Aug 05 2018
    
  • Mathematica
    Table[2 n + 4 Floor[(n + 1)/3] - 1, {n, 1, 60}] (* Bruno Berselli, Jul 02 2018 *)
    Select[Range[0, 250], MemberQ[{1, 7, 9}, Mod[#, 10]]&] (* Vincenzo Librandi, Aug 05 2018 *)
    CoefficientList[ Series[(x^3 + 2x^2 + 6x + 1)/((x - 1)^2 (x^2 + x + 1)), {x, 0, 60}], x] (* or *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 7, 9, 11}, 61] (* Robert G. Wilson v, Aug 08 2018 *)
  • PARI
    x='x+O('x^60); Vec(x*(1+6*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2))) \\ G. C. Greubel, Aug 08 2018

Formula

a(n) = a(n-3) + 10, a(1) = 1, a(2) = 7, a(3) = 9.
From Bruno Berselli, Jul 02 2018: (Start)
G.f.: x*(1 + 6*x + 2*x^2 + x^3)/((1 - x)^2*(1 + x + x^2)).
a(n) = 2*n + 4*floor((n+1)/3) - 1. (End)

Extensions

Definition from Jianing Song, Aug 02 2018