A317657 Numbers congruent to {15, 75, 95} mod 100.
15, 75, 95, 115, 175, 195, 215, 275, 295, 315, 375, 395, 415, 475, 495, 515, 575, 595, 615, 675, 695, 715, 775, 795, 815, 875, 895, 915, 975, 995, 1015, 1075, 1095, 1115, 1175, 1195, 1215, 1275, 1295, 1315, 1375, 1395, 1415, 1475, 1495, 1515
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1)
Programs
-
GAP
Filtered([0..1520], n->n mod 100=15 or n mod 100=75 or n mod 100=95); # Muniru A Asiru, Aug 29 2018
-
Maple
select(n->modp(n,100)=15 or modp(n,100)=75 or modp(n,100)=95,[$0..1520]); # Muniru A Asiru, Aug 29 2018
-
Mathematica
Rest@ CoefficientList[Series[(5 x (x^3 + 4 x^2 + 12 x + 3))/((x^2 + x + 1) (x - 1)^2), {x, 0, 46}], x] (* Michael De Vlieger, Aug 05 2018 *) Table[100*n/3 - 80*Sin[2*n*Pi/3]/(3*Sqrt[3]) - 5,{n,1,46}] (* Stefano Spezia, Aug 29 2018 *)
Formula
a(n) = 10*A317633(n) + 5.
a(n) = a(n-3) + 100, a(1) = 15, a(2) = 75, a(3) = 95.
From Franck Maminirina Ramaharo, Aug 05 2018: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4), n>4.
a(n) = 20*A008854(n+1) - 5.
a(n) = 100*n/3 - 80*sin(2*n*Pi/3)/(3*sqrt(3)) - 5.
G.f.: (5*x*(x^3 + 4*x^2 + 12*x + 3))/((x^2 + x + 1)*(x - 1)^2).
E.g.f.: 100*x*exp(x)/3 - 80*sin(sqrt(3)*x/2)/(exp(x/2)*(3*sqrt(3)))-5*exp(x).
(End)
Comments