cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317657 Numbers congruent to {15, 75, 95} mod 100.

Original entry on oeis.org

15, 75, 95, 115, 175, 195, 215, 275, 295, 315, 375, 395, 415, 475, 495, 515, 575, 595, 615, 675, 695, 715, 775, 795, 815, 875, 895, 915, 975, 995, 1015, 1075, 1095, 1115, 1175, 1195, 1215, 1275, 1295, 1315, 1375, 1395, 1415, 1475, 1495, 1515
Offset: 1

Views

Author

Paul Curtz, Aug 03 2018

Keywords

Comments

Numbers written in French ending in "quinze".
a(n) = 5 * (3, 15, 19, 23, 35, 39, 43, 55, 59, ... ).

Crossrefs

Programs

  • GAP
    Filtered([0..1520], n->n mod 100=15 or n mod 100=75 or n mod 100=95); # Muniru A Asiru, Aug 29 2018
  • Maple
    select(n->modp(n,100)=15 or modp(n,100)=75 or modp(n,100)=95,[$0..1520]); # Muniru A Asiru, Aug 29 2018
  • Mathematica
    Rest@ CoefficientList[Series[(5 x (x^3 + 4 x^2 + 12 x + 3))/((x^2 + x + 1) (x - 1)^2), {x, 0, 46}], x] (* Michael De Vlieger, Aug 05 2018 *)
    Table[100*n/3 - 80*Sin[2*n*Pi/3]/(3*Sqrt[3]) - 5,{n,1,46}] (* Stefano Spezia, Aug 29 2018 *)

Formula

a(n) = 10*A317633(n) + 5.
a(n) = a(n-3) + 100, a(1) = 15, a(2) = 75, a(3) = 95.
From Franck Maminirina Ramaharo, Aug 05 2018: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4), n>4.
a(n) = A290781(A047205(n)).
a(n) = 20*A008854(n+1) - 5.
a(n) = 100*n/3 - 80*sin(2*n*Pi/3)/(3*sqrt(3)) - 5.
G.f.: (5*x*(x^3 + 4*x^2 + 12*x + 3))/((x^2 + x + 1)*(x - 1)^2).
E.g.f.: 100*x*exp(x)/3 - 80*sin(sqrt(3)*x/2)/(exp(x/2)*(3*sqrt(3)))-5*exp(x).
(End)