A317349
G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - (1-x)^n )^n = 1.
Original entry on oeis.org
1, 1, 2, 7, 42, 372, 4269, 59047, 946557, 17175289, 347208299, 7730688884, 187911183701, 4951155672353, 140575561645293, 4279249948000903, 139050095246322895, 4804391579357016747, 175902340755219278039, 6803436418471129704925, 277202774381386656583959, 11868116969794805874111831
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 372*x^5 + 4269*x^6 + 59047*x^7 + 946557*x^8 + 17175289*x^9 + 347208299*x^10 + ...
such that
1 = 1 + (1/A(x) - (1-x)) + (1/A(x) - (1-x)^2)^2 + (1/A(x) - (1-x)^3)^3 + (1/A(x) - (1-x)^4)^4 + (1/A(x) - (1-x)^5)^5 + (1/A(x) - (1-x)^6)^6 + (1/A(x) - (1-x)^7)^7 + (1/A(x) - (1-x)^8)^8 + ...
Also,
A(x) = 1 + (1/A(x) - (1-x)^2) + (1/A(x) - (1-x)^3)^2 + (1/A(x) - (1-x)^4)^3 + (1/A(x) - (1-x)^5)^4 + (1/A(x) - (1-x)^6)^5 + (1/A(x) - (1-x)^7)^6 + (1/A(x) - (1-x)^8)^7 + (1/A(x) - (1-x)^9)^8 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( 1/Ser(A) - (1-x)^(m+1) )^m ) )[#A]/2 ); A[n+1]}
for(n=0,25, print1(a(n),", "))
A317802
G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n) )^n = 1.
Original entry on oeis.org
1, 3, 12, 127, 2445, 66939, 2324026, 96491718, 4631150520, 251413638241, 15206137508067, 1013223645173301, 73729926406815893, 5817609547850902791, 494790115210979151063, 45129281235546080750387, 4394695321061357601501585, 455127430187799524613334185, 49952816657399856543050669882, 5792366218971732073257841216098, 707622192835283858272032714820854
Offset: 0
G.f.: A(x) = 1 + 3*x + 12*x^2 + 127*x^3 + 2445*x^4 + 66939*x^5 + 2324026*x^6 + 96491718*x^7 + 4631150520*x^8 + 251413638241*x^9 + 15206137508067*x^10 + ...
such that
1 = 1 + (1/A(x) - 1/(1+x)^3) + (1/A(x) - 1/(1+x)^6)^2 + (1/A(x) - 1/(1+x)^9)^3 + (1/A(x) - 1/(1+x)^12)^4 + (1/A(x) - 1/(1+x)^15)^5 + (1/A(x) - 1/(1+x)^18)^6 + (1/A(x) - 1/(1+x)^21)^7 + (1/A(x) - 1/(1+x)^24)^8 + ...
Also,
A(x) = 1 + (1/A(x) - 1/(1+x)^6) + (1/A(x) - 1/(1+x)^9)^2 + (1/A(x) - 1/(1+x)^12)^3 + (1/A(x) - 1/(1+x)^15)^4 + (1/A(x) - 1/(1+x)^18)^5 + (1/A(x) - 1/(1+x)^21)^6 + (1/A(x) - 1/(1+x)^24)^7 + (1/A(x) - 1/(1+x)^27)^8 + ...
RELATED SERIES.
(1) The series B(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+1) )^n begins
B(x) = 1 + x + 3*x^2 + 33*x^3 + 634*x^4 + 17326*x^5 + 601161*x^6 + 24961740*x^7 + 1198455358*x^8 + 65087157334*x^9 + 3938132342935*x^10 + ...
restated,
B(x) = 1 + (1/A(x) - 1/(1+x)^4) + (1/A(x) - 1/(1+x)^7)^2 + (1/A(x) - 1/(1+x)^10)^3 + (1/A(x) - 1/(1+x)^13)^4 + (1/A(x) - 1/(1+x)^16)^5 + (1/A(x) - 1/(1+x)^19)^6 + (1/A(x) - 1/(1+x)^22)^7 + (1/A(x) - 1/(1+x)^25)^8 + ...
which can also be written
B(x) = 1/(1+x)^2 + (1/A(x) - 1/(1+x)^6)/(1+x)^4 + (1/A(x) - 1/(1+x)^9)^2/(1+x)^6 + (1/A(x) - 1/(1+x)^12)^3/(1+x)^8 + (1/A(x) - 1/(1+x)^15)^4/(1+x)^10 + (1/A(x) - 1/(1+x)^18)^5/(1+x)^12 + (1/A(x) - 1/(1+x)^21)^6/(1+x)^14 + (1/A(x) - 1/(1+x)^24)^7/(1+x)^16 + (1/A(x) - 1/(1+x)^27)^8/(1+x)^18 + ...
...
(2) The series C(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+2) )^n begins
C(x) = 1 + 2*x + 7*x^2 + 75*x^3 + 1442*x^4 + 39413*x^5 + 1367095*x^6 + 56736076*x^7 + 2722528369*x^8 + 147785496105*x^9 + 8937999326808*x^10 + ...
restated,
C(x) = 1 + (1/A(x) - 1/(1+x)^5) + (1/A(x) - 1/(1+x)^8)^2 + (1/A(x) - 1/(1+x)^11)^3 + (1/A(x) - 1/(1+x)^14)^4 + (1/A(x) - 1/(1+x)^17)^5 + (1/A(x) - 1/(1+x)^20)^6 + (1/A(x) - 1/(1+x)^23)^7 + (1/A(x) - 1/(1+x)^26)^8 + ...
which can also be written
C(x) = 1/(1+x) + (1/A(x) - 1/(1+x)^6)/(1+x)^2 + (1/A(x) - 1/(1+x)^9)^2/(1+x)^3 + (1/A(x) - 1/(1+x)^12)^3/(1+x)^4 + (1/A(x) - 1/(1+x)^15)^4/(1+x)^5 + (1/A(x) - 1/(1+x)^18)^5/(1+x)^6 + (1/A(x) - 1/(1+x)^21)^6/(1+x)^7 + (1/A(x) - 1/(1+x)^24)^7/(1+x)^8 + (1/A(x) - 1/(1+x)^27)^8/(1+x)^9 + ...
...
Compare the above series to
1 = 1/(1+x)^3 + (1/A(x) - 1/(1+x)^6)/(1+x)^6 + (1/A(x) - 1/(1+x)^9)^2/(1+x)^9 + (1/A(x) - 1/(1+x)^12)^3/(1+x)^12 + (1/A(x) - 1/(1+x)^15)^4/(1+x)^15 + (1/A(x) - 1/(1+x)^18)^5/(1+x)^18 + (1/A(x) - 1/(1+x)^21)^6/(1+x)^21 + (1/A(x) - 1/(1+x)^24)^7/(1+x)^24 + (1/A(x) - 1/(1+x)^27)^8/(1+x)^27 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ( 1/Ser(A) - 1/(1+x +x*O(x^#A))^(3*m+3) )^m ) )[#A]/2 ); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
A317666
G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - (1-x)^(2*n) )^n = 1.
Original entry on oeis.org
1, 2, 7, 48, 590, 10602, 244457, 6767792, 216875258, 7863473864, 317632851912, 14132208327052, 686514289288897, 36154193924315170, 2051928741855927465, 124870207134047889232, 8112089716821244526285, 560396754826502247713090, 41024663835523296400398275, 3172738829903313189522259140, 258493327059457440608140711531
Offset: 0
G.f.: A(x) = 1 + 2*x + 7*x^2 + 48*x^3 + 590*x^4 + 10602*x^5 + 244457*x^6 + 6767792*x^7 + 216875258*x^8 + 7863473864*x^9 + 317632851912*x^10 + ...
such that
1 = 1 + (1/A(x) - (1-x)^2) + (1/A(x) - (1-x)^4)^2 + (1/A(x) - (1-x)^6)^3 + (1/A(x) - (1-x)^8)^4 + (1/A(x) - (1-x)^10)^5 + (1/A(x) - (1-x)^12)^6 + (1/A(x) - (1-x)^14)^7 + (1/A(x) - (1-x)^16)^8 + ...
Also,
A(x) = 1 + (1/A(x) - (1-x)^4) + (1/A(x) - (1-x)^6)^2 + (1/A(x) - (1-x)^8)^3 + (1/A(x) - (1-x)^10)^4 + (1/A(x) - (1-x)^12)^5 + (1/A(x) - (1-x)^14)^6 + (1/A(x) - (1-x)^16)^7 + (1/A(x) - (1-x)^18)^8 + ...
RELATED SERIES.
The related series B(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(2*n+1) )^n begins
B(x) = 1 + x + 3*x^2 + 20*x^3 + 245*x^4 + 4394*x^5 + 101203*x^6 + 2800620*x^7 + 89739208*x^8 + 3253949840*x^9 + 131451064170*x^10 + ...
restated,
B(x) = 1 + (1/A(x) - (1-x)^3) + (1/A(x) - (1-x)^5)^2 + (1/A(x) - (1-x)^7)^3 + (1/A(x) - (1-x)^9)^4 + (1/A(x) - (1-x)^11)^5 + (1/A(x) - (1-x)^13)^6 + (1/A(x) - (1-x)^15)^7 + (1/A(x) - (1-x)^17)^8 + ...
which also equals
B(x) = (1-x) + (1/A(x) - (1-x)^4)*(1-x)^2 + (1/A(x) - (1-x)^6)^2*(1-x)^3 + (1/A(x) - (1-x)^8)^3*(1-x)^4 + (1/A(x) - (1-x)^10)^4*(1-x)^5 + (1/A(x) - (1-x)^12)^5*(1-x)^6 + (1/A(x) - (1-x)^14)^6*(1-x)^7 + (1/A(x) - (1-x)^16)^7*(1-x)^8 + (1/A(x) - (1-x)^18)^8*(1-x)^9 + ...
Compare the above to
1 = (1-x)^2 + (1/A(x) - (1-x)^4)*(1-x)^4 + (1/A(x) - (1-x)^6)^2*(1-x)^6 + (1/A(x) - (1-x)^8)^3*(1-x)^8 + (1/A(x) - (1-x)^10)^4*(1-x)^10 + (1/A(x) - (1-x)^12)^5*(1-x)^12 + (1/A(x) - (1-x)^14)^6*(1-x)^14 + (1/A(x) - (1-x)^16)^7*(1-x)^16 + (1/A(x) - (1-x)^18)^8*(1-x)^18 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ( 1/Ser(A) - (1-x)^(2*m+2) )^m ) )[#A]/2 ); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
A317668
G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - (1-x)^(4*n) )^n = 1.
Original entry on oeis.org
1, 4, 26, 356, 8871, 320672, 14811200, 820185072, 52546341422, 3808527303300, 307523461730866, 27352330591164308, 2656394433081980649, 279696497208771609120, 31739466678890197201328, 3862114024795578127697248, 501700135604304149492422266, 69305144023051764776753873168, 10145743117833906529065611237208, 1569100081969097895595627120200512
Offset: 0
G.f.: A(x) = 1 + 4*x + 26*x^2 + 356*x^3 + 8871*x^4 + 320672*x^5 + 14811200*x^6 + 820185072*x^7 + 52546341422*x^8 + 3808527303300*x^9 + 307523461730866*x^10 + ...
such that
1 = 1 + (1/A(x) - (1-x)^4) + (1/A(x) - (1-x)^8)^2 + (1/A(x) - (1-x)^12)^3 + (1/A(x) - (1-x)^16)^4 + (1/A(x) - (1-x)^20)^5 + (1/A(x) - (1-x)^24)^6 + (1/A(x) - (1-x)^28)^7 + (1/A(x) - (1-x)^32)^8 + ...
Also,
A(x) = 1 + (1/A(x) - (1-x)^8) + (1/A(x) - (1-x)^12)^2 + (1/A(x) - (1-x)^16)^3 + (1/A(x) - (1-x)^20)^4 + (1/A(x) - (1-x)^24)^5 + (1/A(x) - (1-x)^28)^6 + (1/A(x) - (1-x)^32)^7 + (1/A(x) - (1-x)^36)^8 + ...
RELATED SERIES.
(1) The series B(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(4*n+1) )^n begins
B(x) = 1 + x + 5*x^2 + 67*x^3 + 1669*x^4 + 60246*x^5 + 2781335*x^6 + 154062232*x^7 + 9875799121*x^8 + 716231200582*x^9 + 57865799711347*x^10 + ...
also given by B(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(4*n+4) )^n * (1-x)^(3*n+3).
(2) The series C(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(4*n+2) )^n begins
C(x) = 1 + 2*x + 11*x^2 + 148*x^3 + 3683*x^4 + 132888*x^5 + 6131332*x^6 + 339397944*x^7 + 21742672693*x^8 + 1575995237188*x^9 + 127268039660042*x^10 + ...
also given by C(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(4*n+4) )^n * (1-x)^(2*n+2).
(3) The series D(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(4*n+3) )^n begins
D(x) = 1 + 3*x + 18*x^2 + 244*x^3 + 6073*x^4 + 219238*x^5 + 10117351*x^6 + 560000464*x^7 + 35868610134*x^8 + 2599382401532*x^9 + 209871544727484*x^10 + ...
also given by D(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(4*n+4) )^n * (1-x)^(n+1).
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ( 1/Ser(A) - (1-x)^(4*m+4) )^m ) )[#A]/2 ); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
Showing 1-4 of 4 results.