A317681 a(n) = smallest m such that sigma(m) = n*m/2.
1, 2, 6, 24, 120, 4320, 30240, 8910720, 14182439040, 17116004505600, 154345556085770649600, 170974031122008628879954060917200710847692800, 141310897947438348259849402738485523264343544818565120000, 12749472205565550032020636281352368036406720997031277595140988449695952806020854579200000
Offset: 2
Examples
a(7) = 4320 since sigma(4320) = 15120 = 7/2*4320 and 4320 is the smallest m such that sigma(m)/m = 7/2.
Links
- Max Alekseyev, Table of n, a(n) for n = 2..16
- Achim Flammenkamp, The Multiply Perfect Numbers Page
- Fred Helenius, A glossary of MPFN-related terms.
- G. P. Michon, Multiplicative functions: Abundancy = sigma(n)/n
- G. P. Michon, Multiperfect and hemiperfect numbers
- Walter Nissen, Abundancy: Some Resources
Crossrefs
Programs
-
Mathematica
Nest[Append[#, Block[{m = #1[[-1]] + 1}, While[DivisorSigma[1, m] != #2 m/2, m++]; m]] & @@ {#, Length@ # + 2} &, {1}, 6] (* Michael De Vlieger, Aug 05 2018 *)
-
PARI
for(n=2, 10, for(m=1, 10^12, if(sigma(m)/m==n/2, print1(m, ", "); break())))
-
PARI
a(n) = my(k=1); while (sigma(k) != k*n/2, k++); k; \\ Michel Marcus, May 15 2025
Extensions
a(15) = A088912(7) added by Max Alekseyev, Jun 05 2025
Comments