cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A281116 Number of factorizations of n>=2 into factors greater than 1 with no common divisor other than 1 (a(1)=0 by convention).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 1, 5, 0, 1, 1, 3, 0, 4, 0, 2, 2, 1, 0, 5, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 8, 0, 1, 2, 0, 1, 4, 0, 2, 1, 4, 0, 9, 0, 1, 2, 2, 1, 4, 0, 5, 0, 1, 0, 8, 1, 1, 1, 3, 0, 8, 1, 2, 1, 1, 1, 7, 0, 2, 2, 5
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2017

Keywords

Comments

Let (e1, e2, ..., ek) be a prime-signature of n (that is, n = p^e1 * q^e2 * ... * r^ek for some primes, p, q, ..., r). Then a(n) is the number of ways of partitioning multiset {e1 x 1, e2 x 2, ..., ek x k} into multisets such that none of the numbers 1 .. k is present in all member multisets of that set partition. - Antti Karttunen, Sep 08 2018

Examples

			a(6)=1:  (2*3)
a(12)=2; (2*2*3)       (3*4)
a(24)=3: (2*2*2*3)     (2*3*4)     (3*8)
a(30)=4: (2*3*5)       (2*15)      (3*10)    (5*6)
a(36)=5: (2*2*3*3)     (2*2*9)     (2*3*6)   (3*3*4)   (4*9)
a(96)=7: (2*2*2*2*2*3) (2*2*2*3*4) (2*2*3*8) (2*3*4*4) (2*3*16) (3*4*8) (3*32).
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[postfacs[n],GCD@@#===1&]],{n,2,100}]
  • PARI
    A281116(n, m=n, facs=List([])) = if(1==n, (1==gcd(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A281116(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Sep 08 2018

Extensions

Term a(1) = 0 prepended by Antti Karttunen, Sep 08 2018

A317757 Number of non-isomorphic multiset partitions of size n such that the blocks have empty intersection.

Original entry on oeis.org

1, 0, 1, 4, 17, 56, 205, 690, 2446, 8506, 30429, 109449, 402486, 1501424, 5714194, 22132604, 87383864, 351373406, 1439320606, 6003166059, 25488902820, 110125079184, 483987225922, 2162799298162, 9823464989574, 45332196378784, 212459227340403, 1010898241558627, 4881398739414159
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 17 multiset partitions:
  {1}{234},{2}{111},{2}{113},{11}{22},{11}{23},{12}{34},
  {1}{1}{22},{1}{1}{23},{1}{2}{11},{1}{2}{12},{1}{2}{13},{1}{2}{34},{2}{3}{11},
  {1}{1}{1}{2},{1}{1}{2}{2},{1}{1}{2}{3},{1}{2}{3}{4}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,strnorm[n]}]]],{n,6}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    R(q, n)={vector(n, t, x*Ser(K(q, t, n)/t))}
    a(n)={my(s=0); forpart(q=n, my(f=prod(i=1, #q, 1 - x^q[i]), u=R(q,n)); s+=permcount(q)*sum(k=0, n, my(c=polcoef(f,k)); if(c, c*polcoef(exp(sum(t=1, n\(k+1), x^(t*k)*u[t], O(x*x^n) ))/if(k,1-x^k,1), n))) ); s/n!} \\ Andrew Howroyd, May 30 2023

Extensions

a(8)-a(10) from Gus Wiseman, Sep 27 2018
a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, May 30 2023

A317752 Number of multiset partitions of normal multisets of size n such that the blocks have empty intersection.

Original entry on oeis.org

0, 1, 8, 49, 305, 1984, 13686, 100124, 776885, 6386677, 55532358, 509549386, 4921352952, 49899820572, 529807799836, 5876162077537, 67928460444139, 816764249684450, 10195486840926032, 131896905499007474, 1765587483656124106, 24419774819813602870
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.

Examples

			The a(3) = 8 multiset partitions with empty intersection:
  {{2},{1,1}}
  {{1},{2,2}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1},{1},{2}}
  {{1},{2},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,allnorm[n]}]],{n,6}]
  • PARI
    P(n,k)={1/prod(i=1, n, (1 - x^i*y + O(x*x^n))^binomial(k+i-1, k-1))}
    R(n,k)={my(p=P(n,k), q=p/(1-y+O(y*y^n))); Vec(sum(i=2, n, polcoef(p,i,y) + polcoef(q,i,y)*sum(j=1, n\i, (-1)^j*binomial(k,j)*x^(i*j))), -n)}
    seq(n)={sum(k=2, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Feb 05 2021

Extensions

Terms a(9) and beyond from Andrew Howroyd, Feb 05 2021

A317755 Number of multiset partitions of strongly normal multisets of size n such that the blocks have empty intersection.

Original entry on oeis.org

0, 1, 6, 30, 130, 629, 2930, 15019, 78224, 438626, 2548481
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(3) = 6 strongly normal multiset partitions with empty intersection:
  {{2},{1,1}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1},{1},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,strnorm[n]}]],{n,6}]

Extensions

a(10)-a(11) from Robert Price, May 08 2021

A317748 Irregular triangle where T(n,k) is the number of factorizations of n into factors > 1 with GCD d = A027750(n, k).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 2, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 3, 3, 0, 0, 0, 0, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			Triangle begins:
   1:  0
   2:  0  1
   3:  0  1
   4:  0  1  1
   5:  0  1
   6:  1  0  0  1
   7:  0  1
   8:  0  2  0  1
   9:  0  1  1
  10:  1  0  0  1
  11:  0  1
  12:  2  1  0  0  0  1
  13:  0  1
  14:  1  0  0  1
  15:  1  0  0  1
  16:  0  3  1  0  1
  17:  0  1
  18:  2  0  1  0  0  1
  19:  0  1
  20:  2  1  0  0  0  1
		

Crossrefs

Row lengths are A000005. Row sums are A001055. First column is A281116. Number of nonzero terms in each row is A317751.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    goc[n_,m_]:=Length[Select[facs[n],And[And@@(Divisible[#,m]&/@#),GCD@@(#/m)==1]&]];
    Table[goc[n,d],{n,30},{d,Divisors[n]}]

Extensions

Name edited by Peter Munn, Mar 05 2025
Showing 1-5 of 5 results.