A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1
A319684 Sum of A003415(d) over the divisors d of n, where A003415 is arithmetic derivative.
0, 1, 1, 5, 1, 7, 1, 17, 7, 9, 1, 27, 1, 11, 10, 49, 1, 34, 1, 37, 12, 15, 1, 83, 11, 17, 34, 47, 1, 54, 1, 129, 16, 21, 14, 114, 1, 23, 18, 117, 1, 68, 1, 67, 55, 27, 1, 227, 15, 64, 22, 77, 1, 142, 18, 151, 24, 33, 1, 190, 1, 35, 69, 321, 20, 96, 1, 97, 28, 90, 1, 326, 1, 41, 75, 107, 20, 110, 1, 325, 142, 45, 1, 244, 24, 47, 34, 219, 1, 243, 22
Offset: 1
Keywords
Comments
Inverse Möbius transform of A003415.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
Block[{a}, a[1] = 0; a[n_] := a[n] = If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Array[DivisorSum[#, a[#] &] &, 91]] (* Michael De Vlieger, May 24 2021 *)
-
PARI
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 A319684(n) = sumdiv(n,d,A003415(d));
A346241 Dirichlet inverse of pointwise sum of A003415 (arithmetic derivative of n) and A063524 (1, 0, 0, 0, ...).
1, -1, -1, -3, -1, -3, -1, -5, -5, -5, -1, -1, -1, -7, -6, -3, -1, -2, -1, -5, -8, -11, -1, 17, -9, -13, -16, -9, -1, 3, -1, 11, -12, -17, -10, 33, -1, -19, -14, 19, -1, 1, -1, -17, -14, -23, -1, 63, -13, -14, -18, -21, -1, 28, -14, 21, -20, -29, -1, 76, -1, -31, -22, 45, -16, -3, -1, -29, -24, -9, -1, 112, -1, -37, -22, -33
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 65537; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d
A003415plusA063524(n) = if(n<=1, 1, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); v346241 = DirInverseCorrect(vector(up_to,n,A003415plusA063524(n))); A346241(n) = v346241[n]; -
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); memoA346241 = Map(); A346241(n) = if(1==n,1,my(v); if(mapisdefined(memoA346241,n,&v), v, v = -sumdiv(n,d,if(d
A003415(n/d)*A346241(d),0)); mapput(memoA346241,n,v); (v)));
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA003415(n/d) * a(d).
A319683 Sum of A003415(d) over the proper divisors d of n, where A003415 is arithmetic derivative.
0, 0, 0, 1, 0, 2, 0, 5, 1, 2, 0, 11, 0, 2, 2, 17, 0, 13, 0, 13, 2, 2, 0, 39, 1, 2, 7, 15, 0, 23, 0, 49, 2, 2, 2, 54, 0, 2, 2, 49, 0, 27, 0, 19, 16, 2, 0, 115, 1, 19, 2, 21, 0, 61, 2, 59, 2, 2, 0, 98, 0, 2, 18, 129, 2, 35, 0, 25, 2, 31, 0, 170, 0, 2, 20, 27, 2, 39, 0, 149, 34, 2, 0, 120, 2, 2, 2, 79, 0, 120, 2, 31, 2, 2, 2, 307, 0, 25, 22, 92, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Comments
Links
Crossrefs
Programs
Mathematica
PARI
PARI
PARI
Scheme
Formula