A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1
A317830 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A175851, the ordinal transform of the nextprime function, A151800.
1, 1, 1, 7, 1, 3, 1, 9, 11, 7, 1, 3, 1, 3, 5, 171, 1, -1, 1, -5, 5, 7, 1, -1, 11, 7, 29, 35, 1, -7, 1, -41, 5, 7, 9, 93, 1, 3, 5, 11, 1, -3, 1, -5, 3, 7, 1, -61, 11, 7, 9, 27, 1, -29, 5, -1, 9, 11, 1, -29, 1, 3, 3, 771, 9, 9, 1, -5, 5, -3, 1, -73, 1, 3, 3, 19, 9, 9, 1, -141, -45, 7, 1, -53, 5, 7, 9, 43, 1, -63, 5, 11, 9, 11, 13, 1597, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
A175851[n_] := If[!CompositeQ[n], 1, n - NextPrime[n, -1] + 1]; f[n_] := f[n] = If[n == 1, 1, (1/2)(A175851[n] - Sum[If[1 < d < n, f[d]* f[n/d], 0], {d, Divisors[n]}])]; a[n_] := Numerator[f[n]]; Array[a, 100] (* Jean-François Alcover, Dec 19 2021 *)
-
PARI
A175851(n) = if(1==n,n,1 + n - precprime(n)); A317830aux(n) = if(1==n,n,(A175851(n)-sumdiv(n,d,if((d>1)&&(d
A317830aux(d)*A317830aux(n/d),0)))/2); A317830(n) = numerator(A317830aux(n)); -
PARI
\\ Memoized implementation: memo317830 = Map(); A317830aux(n) = if(1==n,n,if(mapisdefined(memo317830,n),mapget(memo317830,n),my(v = (A175851(n)-sumdiv(n,d,if((d>1)&&(d
A317830aux(d)*A317830aux(n/d),0)))/2); mapput(memo317830,n,v); (v)));
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A175851(n) - Sum_{d|n, d>1, d 1.
Comments
Links
Crossrefs
Programs
Mathematica
PARI
PARI
PARI
Scheme
Formula