A317849 Number of states of the Finite State Automaton Gn accepting the language of maximal (or minimal) lexicographic representatives of elements in the positive braid monoid An.
1, 5, 18, 56, 161, 443, 1190, 3156, 8315, 21835, 57246, 149970, 392743, 1028351, 2692416, 7049018, 18454775, 48315461, 126491780, 331160070, 866988641, 2269806085, 5942429868, 15557483796, 40730021821, 106632581993, 279167724510, 730870591916, 1913444051645, 5009461563455
Offset: 1
Keywords
Links
- Ramón Flores, Juan González-Meneses, On lexicographic representatives in braid monoids, arXiv:1808.02755 [math.GR], 2018.
- Volker Gebhardt, Juan González-Meneses, Generating random braids, J. Comb. Th. A 120 (1), 2013, 111-128.
Programs
-
GAP
List([1..30],n->Sum([1..n],i->(Binomial(n+1-i,2)+1)*Fibonacci(2*i))); # Muniru A Asiru, Aug 09 2018
-
Magma
[&+[(Binomial(n+1-k, 2)+1)*Fibonacci(2*k): k in [1..n]]: n in [1..30]]; // Vincenzo Librandi, Aug 09 2018
-
Mathematica
Table[Sum[(Binomial[n + 1 - k, 2] + 1) Fibonacci[2 k], {k, n}], {n, 30}] (* Vincenzo Librandi, Aug 09 2018 *)
-
PARI
a(n) = sum(i=1, n, (binomial(n+1-i, 2)+1)*fibonacci(2*i));
Formula
a(n) = Sum_{i=1..n} (binomial(n+1-i, 2)+1)*Fibonacci(2*i).
Conjecture: g.f. -x*(1-x+x^2) / ( (x^2-3*x+1)*(x-1)^3 ). a(n) = 2*A001519(n+1) -n*(n+1)/2 -2 = 2*A001519(n+1)-A152948(n+2). - R. J. Mathar, Aug 17 2018