cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317849 Number of states of the Finite State Automaton Gn accepting the language of maximal (or minimal) lexicographic representatives of elements in the positive braid monoid An.

Original entry on oeis.org

1, 5, 18, 56, 161, 443, 1190, 3156, 8315, 21835, 57246, 149970, 392743, 1028351, 2692416, 7049018, 18454775, 48315461, 126491780, 331160070, 866988641, 2269806085, 5942429868, 15557483796, 40730021821, 106632581993, 279167724510, 730870591916, 1913444051645, 5009461563455
Offset: 1

Views

Author

Michel Marcus, Aug 09 2018

Keywords

Programs

  • GAP
    List([1..30],n->Sum([1..n],i->(Binomial(n+1-i,2)+1)*Fibonacci(2*i))); # Muniru A Asiru, Aug 09 2018
  • Magma
    [&+[(Binomial(n+1-k, 2)+1)*Fibonacci(2*k): k in [1..n]]: n in [1..30]]; // Vincenzo Librandi, Aug 09 2018
    
  • Mathematica
    Table[Sum[(Binomial[n + 1 - k, 2] + 1) Fibonacci[2 k], {k, n}], {n, 30}] (* Vincenzo Librandi, Aug 09 2018 *)
  • PARI
    a(n) = sum(i=1, n, (binomial(n+1-i, 2)+1)*fibonacci(2*i));
    

Formula

a(n) = Sum_{i=1..n} (binomial(n+1-i, 2)+1)*Fibonacci(2*i).
Conjecture: g.f. -x*(1-x+x^2) / ( (x^2-3*x+1)*(x-1)^3 ). a(n) = 2*A001519(n+1) -n*(n+1)/2 -2 = 2*A001519(n+1)-A152948(n+2). - R. J. Mathar, Aug 17 2018