A318274 Triangle read by rows: T(n,k) = n for 0 < k < n and T(n,0) = T(n,n) = 1.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 4, 1, 1, 5, 5, 5, 5, 1, 1, 6, 6, 6, 6, 6, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 8, 8, 8, 8, 8, 8, 8, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1, 12
Offset: 0
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 ---+-------------------------- 0 | 1 1 | 1 1 2 | 1 2 1 3 | 1 3 3 1 4 | 1 4 4 4 1 5 | 1 5 5 5 5 1 6 | 1 6 6 6 6 6 1 7 | 1 7 7 7 7 7 7 1 8 | 1 8 8 8 8 8 8 8 1 ... For n = 5, the binary bitonic words are (k = 0) 00000; (k = 1) 10000, 01000, 00100, 00010, 00001; (k = 2) 11000, 01100, 00110, 00011, 10001; (k = 3) 11100, 01110, 00111, 10011, 11001; (k = 4) 11110, 01111, 10111, 11011, 11101; (k = 5) 11111.
Links
- N. Alon, H. Last, R. Pinchasi and M. Sharir, On the complexity of arrangements of circles in the plane, Discrete Comput. Geom. Vol. 26 (2001), 465-492.
- K. E. Batcher, Sorting networks and their applications, Proceed. AFIPS Spring Joint Comput. Conf. 32 (1968), 307-314.
- W. Denton, Intersecting circles.
- D. Kinsela, Plane division by Lines AND Circles (Problem, Analysis and Solution).
- H. W. Lang, Bitonic sequences.
- F. Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
- Franck Maminirina Ramaharo, Illustration of initial terms
- P. Rosin, Rosettes and other arrangements of circles, Nexus Network Journal Vol. 3 (2001), 113-126.
- Eric Weisstein's World of Mathematics, Plane Division by Circles.
Programs
-
Mathematica
Table[If[k == n || k == 0, 1, n], {n, 0, 20}, {k, 0, n}] // Flatten
-
Maxima
T(n, k) := if k = 0 or k = n then 1 else if k < n then n else 0$ for n:0 thru 10 do print(makelist(T(n, k), k, 0, n));
-
PARI
T(n,k) = if ((k==0) || (k==n), 1, n); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 25 2018
-
Python
from math import isqrt def A318274(n): return 1 if 0<=(k:=n+1<<1)-(r:=(m:=isqrt(k))*(m+1))<=2 else m-(k<=r) # Chai Wah Wu, Nov 09 2024
Formula
The n-th row are the coefficients in the expansion of 1 + x^n + n*x*(1 - x^(n - 1))/(1 - x), n > 0.
G.f. for column k > 0: (((1 - k)*x^2 - (1 - k)*x + 1)*x^k)/(x - 1)^2.
T(n+1,n-k) - n + k = A128227(n,k).
Comments