A318314 Denominators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.
1, 2, 1, 8, 1, 2, 1, 16, 2, 2, 1, 8, 1, 2, 1, 128, 1, 4, 1, 8, 1, 2, 1, 16, 2, 2, 2, 8, 1, 2, 1, 256, 1, 2, 1, 16, 1, 2, 1, 16, 1, 2, 1, 8, 2, 2, 1, 128, 2, 4, 1, 8, 1, 4, 1, 16, 1, 2, 1, 8, 1, 2, 2, 1024, 1, 2, 1, 8, 1, 2, 1, 32, 1, 2, 2, 8, 1, 2, 1, 128, 8, 2, 1, 8, 1, 2, 1, 16, 1, 4, 1, 8, 1, 2, 1, 256, 1, 4, 2, 16, 1, 2, 1, 16, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
a35[n_] := (1 - (-1)^n)/2; a120[n_] := DigitCount[n, 2, 1]; a[n_] := Product[{p, e} = pe; 2^(((2 - a35[p])*e) - a120[e]), {pe, FactorInteger[n]}]; a /@ Range[100] (* Jean-François Alcover, Sep 19 2019 *)
-
PARI
up_to = 16384; A068068(n) = (2^omega(n>>valuation(n, 2))); \\ From A068068 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318313_15 = DirSqrt(vector(up_to, n, A068068(n))); A318313(n) = numerator(v318313_15[n]); A318314(n) = denominator(v318313_15[n]);
Formula
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A068068(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318315(n).
From Antti Karttunen, Sep 03-07 2018: (Start, conjectured formulas)
a(n) = A006519(n) * A317934(n), thus multiplicative with a(2^e) = 2^A005187(e), a(p^e) = 2^A011371(e) for odd primes p.
(End)
Comments