A318454 Denominators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.
1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 128, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 128, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 1024, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 128, 1, 2, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 2, 1, 8, 1, 2, 1, 16, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[f[n] // Denominator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
-
PARI
up_to = 16384; A001227(n) = numdiv(n>>valuation(n, 2)); \\ From A001227 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318453_54 = DirSqrt(vector(up_to, n, A001227(n))); A318454(n) = denominator(v318453_54[n]);
Formula
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A001227(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318455(n).
Sum_{k=1..n} A318453(k) / a(k) ~ n/sqrt(2). - Vaclav Kotesovec, May 09 2025
Comments