A318756 Total number of binary digits used to write all partitions of n in binary notation.
1, 4, 8, 18, 30, 55, 85, 141, 211, 324, 467, 691, 968, 1377, 1898, 2631, 3554, 4830, 6425, 8578, 11272, 14819, 19243, 25005, 32133, 41279, 52585, 66907, 84512, 106636, 133685, 167377, 208439, 259145, 320696, 396251, 487532, 598881, 732990, 895627, 1090752
Offset: 1
Examples
For n = 3 there are 3 partitions which when written in binary are: 11, 10+1, 1+1+1, for a total of 8 binary integers.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
Programs
-
Maple
h:= proc(n) option remember; 1+ilog2(n) end: b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, b(n, i-1)+(p-> p+[0, p[1]* h(i)])(b(n-i, min(n-i, i))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=1..60); # Alois P. Heinz, Sep 27 2018
-
Mathematica
h[n_] := h[n] = 1 + Log[2, n] // Floor; b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, 0, b[n, i - 1] + Function[p, p + {0, p[[1]]*h[i]}][b[n - i, Min[n - i, i]]]]]; a[n_] := b[n, n][[2]]; a /@ Range[1, 60] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz *) Table[Length[Flatten[IntegerDigits[#,2]&/@IntegerPartitions[n]]],{n,50}] (* Harvey P. Dale, Aug 14 2021 *)
-
PARI
a(n)={subst(deriv(polcoef(1/prod(k=1, n, 1 - x^k*y^(logint(k,2) + 1) + O(x*x^n)), n)), y, 1)} \\ Andrew Howroyd, Sep 07 2018