A318760 a(n) = (2^(p-2) + 3^(p-2) + 6^(p-2) - 1)/p where p = prime(n).
50, 1150, 917990, 27921250, 27658786250, 890883616630, 953780917514270, 35292771610455205250, 1188569463078058297390, 46461372967525788391551250, 54339408694585566675022336250, 1865231796118578544316494648870, 2211609309235145328175672372758350, 91503540845067670142505715662203731250
Offset: 3
Keywords
Examples
a(3) = (2^3 + 3^3 + 6^3 - 1)/5 = 50, a(4) = (2^5 + 3^5 + 6^5 - 1)/7 = 1150, a(5) = (2^9 + 3^9 + 6^9 - 1)/11 = 917990 ...
Links
- International Mathematical Olympiad, 46th IMO 2005
Crossrefs
For composite k such that (2^(k-2) + 3^(k-2) + 6^(k-2) - 1)/k is an integer, see A318761.
Programs
-
Magma
[(2^(NthPrime(n)-2)+3^(NthPrime(n)-2)+6^(NthPrime(n)-2)- 1)/NthPrime(n): n in [3..20]]; // Vincenzo Librandi, Sep 03 2018
-
Mathematica
Table[(2^(Prime[n] - 2) + 3^(Prime[n] - 2) + 6^(Prime[n] - 2) - 1) / Prime[n], {n, 3, 20}] (* Vincenzo Librandi, Sep 03 2018 *)
-
PARI
a(n) = (2^(prime(n)-2) + 3^(prime(n)-2) + 6^(prime(n)-2) - 1)/prime(n)
Comments