cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318807 Numbers whose sum of squarefree divisors and sum of nonsquarefree divisors are both perfect squares.

Original entry on oeis.org

1, 3, 9, 22, 27, 66, 70, 88, 94, 115, 119, 170, 198, 210, 214, 217, 264, 265, 280, 282, 310, 322, 345, 357, 376, 382, 385, 497, 510, 517, 527, 594, 630, 642, 651, 679, 680, 710, 729, 742, 745, 782, 795, 840, 846, 856, 862, 889, 930, 935, 966, 970, 1035, 1066
Offset: 1

Views

Author

Michel Lagneau, Sep 04 2018

Keywords

Comments

Let s be the sum of the squarefree divisors of a number m. The sequence lists the numbers m such that s and sigma(m) - s are both a perfect square.
Or numbers m such that A048250(m) and A162296(m) are perfect squares.
The corresponding pairs of squares (s, sigma(m) - s) are (1, 0), (4, 0), (4, 9), (36, 0), (4, 36), (144, 0), (144, 0), (36, 144), (144, 0), (144, 0), (144, 0), (324, 0), (144, 324), ...
The subsequence b(n) where s and sigma(m) - s are strictly positive begins with 9, 27, 88, 198, 264, 280, 376, 594, 630, ... b(n) is not squarefree (subsequence of A013929).
The subsequence c(n) where the ratio r = (sigma(a(n)) - s)/s is an integer begins with 27, 88, 264, 280, 376, 594, 680, 840, 856, 1128, 1240, ... and the corresponding r are 3^2, 2^2, 2^2, 2^2, 2^2, 3^2, 2^2, 2^2, 2^2, 2^2, 2^2, 2^2, 2^2, 5^2, 3^2, 2^2, 7^2, 3^2, 2^2, 11^2, ... It is conjectured that r belongs to A001248.

Examples

			27 is in the sequence because A048250(27) = 4 and A162296(27) = 36 are both a perfect square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F, SF, NSF, t;
      F:= ifactors(n)[2];
      SF:= mul(1+t[1],t=F);
      if not issqr(SF) then return false fi;
      NSF:= mul((1-t[1]^(1+t[2]))/(1-t[1]), t=F) - SF;
      issqr(NSF);
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Sep 05 2018
  • Mathematica
    lst={};Do[If[IntegerQ[Sqrt[Total[Select[Divisors[n],SquareFreeQ]]]]&&IntegerQ[Sqrt[DivisorSigma[1,n]-Total[Select[Divisors[n],SquareFreeQ]]]],AppendTo[lst,n]],{n,1100}];lst
    sdsndQ[n_]:=Module[{d=Divisors[n],sf,nsf},sf=Select[d,SquareFreeQ];nsf= Complement[ d,sf];AllTrue[ {Sqrt[ Total[sf]],Sqrt[ Total[nsf]]},IntegerQ]]; Select[Range[1500],sdsndQ] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    isok(n) = {my(sd=sumdiv(n, d, issquarefree(d)*d)); issquare(sd) && issquare(sigma(n) - sd);} \\ Michel Marcus, Sep 04 2018

Extensions

Definition modified by Harvey P. Dale, Sep 13 2024