cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369291 Array read by antidiagonals: T(n,k) = phi(k^n-1)/n, where phi is Euler's totient function (A000010), n >= 1, k >= 2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 12, 8, 6, 2, 12, 20, 32, 22, 6, 6, 8, 56, 48, 120, 48, 18, 4, 18, 36, 216, 280, 288, 156, 16, 6, 16, 144, 160, 1240, 720, 1512, 320, 48, 4, 30, 96, 432, 1120, 5040, 5580, 4096, 1008, 60, 10, 16, 216, 640, 5400, 6048, 31992, 14976, 15552, 2640, 176
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2024

Keywords

Comments

For k a prime power, T(n,k) is the number of primitive polynomials of degree n over GF(k). See A011260, A027385 for additional information.

Examples

			Array begins:
n\k|  2   3    4     5      6      7      8       9 ...
---+---------------------------------------------------
 1 |  1   1    2     2      4      2      6       4 ...
 2 |  1   2    4     4     12      8     18      16 ...
 3 |  2   4   12    20     56     36    144      96 ...
 4 |  2   8   32    48    216    160    432     640 ...
 5 |  6  22  120   280   1240   1120   5400    5280 ...
 6 |  6  48  288   720   5040   6048  23328   27648 ...
 7 | 18 156 1512  5580  31992  37856 254016  340704 ...
 8 | 16 320 4096 14976 139968 192000 829440 1966080 ...
  ...
		

Crossrefs

Rows n=1..3 and 5 are A000010(k-1), A319210, A319213, A319214.
Cf. A319183.

Programs

  • Mathematica
    A369291[n_, k_] := EulerPhi[k^n - 1]/n;
    Table[A369291[k, n-k+2], {n, 15}, {k, n}] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    T(n,k) = eulerphi(k^n-1)/n

A295496 a(n) = phi(6^n-1)/n, where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 12, 56, 216, 1240, 5040, 31992, 139968, 828576, 3720000, 25238048, 104509440, 803499840, 3687014016, 24373440000, 110630707200, 790546192128, 3463116249600, 25522921047520, 108957312000000, 816244048599840, 3924124012353600, 26682733370563200
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

Column k=6 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), this sequence (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), A295497 (k=10), A319166 (k=11).

Programs

  • Mathematica
    Array[EulerPhi[6^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(6^n-1)/n}

A295497 a(n) = phi(10^n-1)/n, where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 30, 216, 1500, 12960, 77760, 948192, 7344000, 72071856, 589032000, 6060314304, 38491200000, 496775732544, 4309959326400, 40676940288000, 345599944704000, 3921566733817776, 24555273410096640, 350877192982456140, 2915072245440000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

Column k=10 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), A295496 (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), this sequence (k=10), A319166 (k=11).

Programs

  • Mathematica
    Array[EulerPhi[10^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(10^n-1)/n}

A158502 Array T(n,k) read by antidiagonals: number of primitive polynomials of degree k over GF(prime(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 8, 20, 8, 6, 4, 16, 36, 48, 22, 6, 8, 24, 144, 160, 280, 48, 18, 6, 48, 240, 960, 1120, 720, 156, 16, 10, 48, 816, 1536, 12880, 6048, 5580, 320, 48, 12, 80, 756, 5376, 24752, 62208, 37856, 14976, 1008, 60, 8, 96, 1560, 8640, 141984, 224640, 1087632, 192000, 99360
Offset: 1

Views

Author

R. J. Mathar, Aug 29 2011

Keywords

Examples

			The array starts in row n=1 with columns k>=1 as
1, 1,  2,     2,     6,      6,     18,     16,      48,       60,  A011260
1, 2,  4,     8,    22,     48,    156,    320,    1008,     2640,  A027385
2, 4,  20,   48,   280,    720,   5580,  14976,   99360,   291200,  A027741
2, 8,  36,  160,  1120,   6048,  37856, 192000, 1376352,  8512000,  A027743
4,16, 144,  960, 12880,  62208,1087632,7027200,85098816,691398400,  A319166
4,24, 240, 1536, 24752, 224640,2988024,21934080
		

Crossrefs

Programs

  • Maple
    A := proc(n,k) local p ; p := ithprime(n) ; if k = 0 then 1; else numtheory[phi](p^k-1)/k ; end if;end proc:
  • Mathematica
    t[n_, k_] := If[k == 0, 1, p = Prime[n]; EulerPhi[p^k - 1]/k]; Flatten[ Table[t[n - k + 1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Jun 04 2012, after Maple *)

Formula

T(n,k) = A000010(p^k-1)/k = A369291(k, p) with p=A000040(n).
Showing 1-4 of 4 results.