cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369291 Array read by antidiagonals: T(n,k) = phi(k^n-1)/n, where phi is Euler's totient function (A000010), n >= 1, k >= 2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 12, 8, 6, 2, 12, 20, 32, 22, 6, 6, 8, 56, 48, 120, 48, 18, 4, 18, 36, 216, 280, 288, 156, 16, 6, 16, 144, 160, 1240, 720, 1512, 320, 48, 4, 30, 96, 432, 1120, 5040, 5580, 4096, 1008, 60, 10, 16, 216, 640, 5400, 6048, 31992, 14976, 15552, 2640, 176
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2024

Keywords

Comments

For k a prime power, T(n,k) is the number of primitive polynomials of degree n over GF(k). See A011260, A027385 for additional information.

Examples

			Array begins:
n\k|  2   3    4     5      6      7      8       9 ...
---+---------------------------------------------------
 1 |  1   1    2     2      4      2      6       4 ...
 2 |  1   2    4     4     12      8     18      16 ...
 3 |  2   4   12    20     56     36    144      96 ...
 4 |  2   8   32    48    216    160    432     640 ...
 5 |  6  22  120   280   1240   1120   5400    5280 ...
 6 |  6  48  288   720   5040   6048  23328   27648 ...
 7 | 18 156 1512  5580  31992  37856 254016  340704 ...
 8 | 16 320 4096 14976 139968 192000 829440 1966080 ...
  ...
		

Crossrefs

Rows n=1..3 and 5 are A000010(k-1), A319210, A319213, A319214.
Cf. A319183.

Programs

  • Mathematica
    A369291[n_, k_] := EulerPhi[k^n - 1]/n;
    Table[A369291[k, n-k+2], {n, 15}, {k, n}] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    T(n,k) = eulerphi(k^n-1)/n

A295503 a(n) = phi(10^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 60, 648, 6000, 64800, 466560, 6637344, 58752000, 648646704, 5890320000, 66663457344, 461894400000, 6458084523072, 60339430569600, 610154104320000, 5529599115264000, 66666634474902192, 441994921381739520, 6666666666666666660, 58301444908800000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), this sequence (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    Array[ EulerPhi[10^# - 1] &, 20] (* Robert G. Wilson v, Nov 22 2017 *)
  • PARI
    {a(n) = eulerphi(10^n-1)}

Formula

a(n) = n*A295497(n).
a(n) = A000010(A002283(n)). - Michel Marcus, Nov 25 2017

A295496 a(n) = phi(6^n-1)/n, where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 12, 56, 216, 1240, 5040, 31992, 139968, 828576, 3720000, 25238048, 104509440, 803499840, 3687014016, 24373440000, 110630707200, 790546192128, 3463116249600, 25522921047520, 108957312000000, 816244048599840, 3924124012353600, 26682733370563200
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

Column k=6 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), this sequence (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), A295497 (k=10), A319166 (k=11).

Programs

  • Mathematica
    Array[EulerPhi[6^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(6^n-1)/n}

A319166 Number of primitive polynomials of degree n over GF(11).

Original entry on oeis.org

4, 16, 144, 960, 12880, 62208, 1087632, 7027200, 85098816, 691398400, 10374307328, 49985372160, 1061265441600, 7064952935040, 90426613939200, 708867057254400, 11892871258806912, 65078340559220736, 1287559798913990448, 8819554320783360000, 111715065087913437696
Offset: 1

Views

Author

Seiichi Manyama, Sep 12 2018

Keywords

Crossrefs

Column k=11 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), A295496 (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), A295497 (k=10), this sequence (k=11).
Cf. A000010.

Programs

  • Mathematica
    Array[EulerPhi[11^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(11^n-1)/n}

Formula

a(n) = phi(11^n - 1)/n where phi is A000010.
Showing 1-4 of 4 results.