cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A027741 Number of primitive polynomials of degree n over GF(5).

Original entry on oeis.org

1, 2, 4, 20, 48, 280, 720, 5580, 14976, 99360, 291200, 2219460, 5184000, 46950120, 139991040, 876960000, 2752708608, 22384531584, 55435726080, 499226178000, 1280348160000, 10957459615200, 34031246515200, 259121741860800, 630789120000000, 5255180000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A369291.

Programs

  • Maple
    with(numtheory): seq(`if`(n=0, 1, phi(5^n-1)/n), n=0..25);
  • Mathematica
    Join[{1}, Array[EulerPhi[5^# - 1]/# &, 25]] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    a(n) = if(n==0, 1, eulerphi(5^n-1)/n) \\ Andrew Howroyd, Feb 01 2024

Extensions

a(23) onwards from Andrew Howroyd, Feb 01 2024

A027695 Number of primitive polynomials of degree n over GF(4).

Original entry on oeis.org

1, 2, 4, 12, 32, 120, 288, 1512, 4096, 15552, 48000, 240064, 552960, 3439800, 9483264, 35640000, 134217728, 673699800, 1451188224, 9644765256, 23685120000, 115605729792, 401556013056, 1996264531840, 4566087106560, 26244000000000, 89961392102400, 356237685227520
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=4 of A369291.

Programs

  • Maple
    with(numtheory): seq(`if`(n=0, 1, phi(4^n-1)/n), n=0..27);
  • Mathematica
    Join[{1}, Array[EulerPhi[4^# - 1]/# &, 30]] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    a(n) = if(n==0, 1, eulerphi(4^n-1)/n) \\ Andrew Howroyd, Feb 01 2024

Formula

a(n) = A295501(n)/n = 2*A027742(n) for n >= 1. - Amiram Eldar, Nov 30 2024

Extensions

a(24) onwards from Andrew Howroyd, Feb 01 2024

A027743 Number of primitive polynomials of degree n over GF(7).

Original entry on oeis.org

1, 2, 8, 36, 160, 1120, 6048, 37856, 192000, 1376352, 8512000, 59865432, 261273600, 2484333600, 15433134080, 96689376000, 520863744000, 4561057021824, 27124330415616, 199503336577688, 958110720000000, 8107845416745984, 56613417213661440, 388083262835207968
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=7 of A369291.

Programs

  • Maple
    with(numtheory): seq(`if`(n=0, 1, phi(7^n-1)/n), n=0..23);
  • Mathematica
    Join[{1}, Array[EulerPhi[7^# - 1]/# &, 25]] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    a(n) = if(n==0, 1, eulerphi(7^n-1)/n) \\ Andrew Howroyd, Feb 01 2024

Extensions

a(21) onwards from Andrew Howroyd, Feb 01 2024

A027744 Number of primitive polynomials of degree n over GF(8).

Original entry on oeis.org

1, 6, 18, 144, 432, 5400, 23328, 254016, 829440, 12607488, 53460000, 633048768, 2176782336, 35784141120, 173408594688, 1903214880000, 6849130659840, 112370402481120, 534356527841280, 6501218491422144, 20323353600000000, 367285791437881344, 1782862092373874688
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=8 of A369291.

Programs

  • Maple
    with(numtheory): seq(`if`(n=0, 1, phi(8^n-1)/n), n=0..22);
  • Mathematica
    Join[{1}, Array[EulerPhi[8^# - 1]/# &, 25]] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    a(n) = if(n==0, 1, eulerphi(8^n-1)/n) \\ Andrew Howroyd, Feb 01 2024

Extensions

a(20) onwards from Andrew Howroyd, Feb 01 2024

A027745 Number of primitive polynomials of degree n over GF(9).

Original entry on oeis.org

1, 4, 16, 96, 640, 5280, 27648, 340704, 1966080, 15676416, 124608000, 1341648000, 7166361600, 97763702400, 629315721216, 4680529920000, 42316647628800, 483414202656000, 2396062681399296, 35513562609100800, 211942058803200000, 2006922093666287616, 16837843397760000000
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=9 of A369291.

Programs

  • Maple
    with(numtheory): seq(`if`(n=0, 1, phi(9^n-1)/n), n=0..22);
  • Mathematica
    Join[{1}, Array[EulerPhi[9^# - 1]/# &, 25]] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    a(n) = if(n==0, 1, eulerphi(9^n-1)/n) \\ Andrew Howroyd, Feb 01 2024

Extensions

a(20) onwards from Andrew Howroyd, Feb 01 2024

A295496 a(n) = phi(6^n-1)/n, where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 12, 56, 216, 1240, 5040, 31992, 139968, 828576, 3720000, 25238048, 104509440, 803499840, 3687014016, 24373440000, 110630707200, 790546192128, 3463116249600, 25522921047520, 108957312000000, 816244048599840, 3924124012353600, 26682733370563200
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

Column k=6 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), this sequence (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), A295497 (k=10), A319166 (k=11).

Programs

  • Mathematica
    Array[EulerPhi[6^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(6^n-1)/n}

A295497 a(n) = phi(10^n-1)/n, where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 30, 216, 1500, 12960, 77760, 948192, 7344000, 72071856, 589032000, 6060314304, 38491200000, 496775732544, 4309959326400, 40676940288000, 345599944704000, 3921566733817776, 24555273410096640, 350877192982456140, 2915072245440000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

Column k=10 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), A295496 (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), this sequence (k=10), A319166 (k=11).

Programs

  • Mathematica
    Array[EulerPhi[10^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(10^n-1)/n}

A319166 Number of primitive polynomials of degree n over GF(11).

Original entry on oeis.org

4, 16, 144, 960, 12880, 62208, 1087632, 7027200, 85098816, 691398400, 10374307328, 49985372160, 1061265441600, 7064952935040, 90426613939200, 708867057254400, 11892871258806912, 65078340559220736, 1287559798913990448, 8819554320783360000, 111715065087913437696
Offset: 1

Views

Author

Seiichi Manyama, Sep 12 2018

Keywords

Crossrefs

Column k=11 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), A295496 (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), A295497 (k=10), this sequence (k=11).
Cf. A000010.

Programs

  • Mathematica
    Array[EulerPhi[11^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(11^n-1)/n}

Formula

a(n) = phi(11^n - 1)/n where phi is A000010.

A319213 a(n) = phi(n^3 - 1)/3 where phi is A000010.

Original entry on oeis.org

2, 4, 12, 20, 56, 36, 144, 96, 216, 144, 520, 240, 840, 480, 576, 816, 1568, 756, 2520, 1232, 1872, 1560, 4400, 1440, 4320, 3024, 4860, 3168, 7056, 2640, 9000, 5984, 7920, 6144, 10080, 4752, 17784, 7992, 13104, 9184, 22080, 7560, 23688, 12960, 14688, 15840, 33120
Offset: 2

Views

Author

Seiichi Manyama, Sep 13 2018

Keywords

Crossrefs

Row 3 of A369291.
Cf. A000010, A068601 (n^3-1).
phi(n^b - 1)/b: A319210 (b=2), this sequence (b=3), A319214 (b=5).

Programs

  • Mathematica
    EulerPhi[Range[2, 50]^3 - 1]/3 (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    {a(n) = eulerphi(n^3-1)/3}

Formula

Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (2/27) * Product_{p prime == 1 (mod 3)} (1 - 3/p^2) * Product_{p prime == 2 (mod 3)} (1 - 1/p^2) = 0.047313356295... . - Amiram Eldar, Dec 09 2024

A319210 a(n) = phi(n^2 - 1)/2 where phi is A000010.

Original entry on oeis.org

1, 2, 4, 4, 12, 8, 18, 16, 30, 16, 60, 24, 48, 48, 64, 48, 144, 48, 108, 80, 132, 80, 220, 96, 180, 144, 252, 96, 420, 128, 300, 256, 240, 192, 432, 216, 432, 288, 480, 192, 840, 240, 504, 440, 552, 352, 966, 320, 672, 480, 832, 432, 1040, 432, 720, 672, 1044, 448
Offset: 2

Views

Author

Seiichi Manyama, Sep 13 2018

Keywords

Crossrefs

Row 2 of A369291.
Cf. A000010, A005563 (n^2-1, shifted), A065474.
phi(n^b - 1)/b: this sequence (b=2), A319213 (b=3), A319214 (b=5).

Programs

  • Magma
    [EulerPhi(n^2-1)/2: n in [2..70]]; // Vincenzo Librandi, Sep 15 2018
  • Mathematica
    Table[(EulerPhi@(n^2 - 1) / 2), {n, 2, 70}] (* Vincenzo Librandi, Sep 15 2018 *)
  • PARI
    {a(n) = eulerphi(n^2-1)/2}
    

Formula

Sum_{k=1..n} a(k) = c * n^3 / 4 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024
Showing 1-10 of 13 results. Next