cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369291 Array read by antidiagonals: T(n,k) = phi(k^n-1)/n, where phi is Euler's totient function (A000010), n >= 1, k >= 2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 12, 8, 6, 2, 12, 20, 32, 22, 6, 6, 8, 56, 48, 120, 48, 18, 4, 18, 36, 216, 280, 288, 156, 16, 6, 16, 144, 160, 1240, 720, 1512, 320, 48, 4, 30, 96, 432, 1120, 5040, 5580, 4096, 1008, 60, 10, 16, 216, 640, 5400, 6048, 31992, 14976, 15552, 2640, 176
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2024

Keywords

Comments

For k a prime power, T(n,k) is the number of primitive polynomials of degree n over GF(k). See A011260, A027385 for additional information.

Examples

			Array begins:
n\k|  2   3    4     5      6      7      8       9 ...
---+---------------------------------------------------
 1 |  1   1    2     2      4      2      6       4 ...
 2 |  1   2    4     4     12      8     18      16 ...
 3 |  2   4   12    20     56     36    144      96 ...
 4 |  2   8   32    48    216    160    432     640 ...
 5 |  6  22  120   280   1240   1120   5400    5280 ...
 6 |  6  48  288   720   5040   6048  23328   27648 ...
 7 | 18 156 1512  5580  31992  37856 254016  340704 ...
 8 | 16 320 4096 14976 139968 192000 829440 1966080 ...
  ...
		

Crossrefs

Rows n=1..3 and 5 are A000010(k-1), A319210, A319213, A319214.
Cf. A319183.

Programs

  • Mathematica
    A369291[n_, k_] := EulerPhi[k^n - 1]/n;
    Table[A369291[k, n-k+2], {n, 15}, {k, n}] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    T(n,k) = eulerphi(k^n-1)/n

A319210 a(n) = phi(n^2 - 1)/2 where phi is A000010.

Original entry on oeis.org

1, 2, 4, 4, 12, 8, 18, 16, 30, 16, 60, 24, 48, 48, 64, 48, 144, 48, 108, 80, 132, 80, 220, 96, 180, 144, 252, 96, 420, 128, 300, 256, 240, 192, 432, 216, 432, 288, 480, 192, 840, 240, 504, 440, 552, 352, 966, 320, 672, 480, 832, 432, 1040, 432, 720, 672, 1044, 448
Offset: 2

Views

Author

Seiichi Manyama, Sep 13 2018

Keywords

Crossrefs

Row 2 of A369291.
Cf. A000010, A005563 (n^2-1, shifted), A065474.
phi(n^b - 1)/b: this sequence (b=2), A319213 (b=3), A319214 (b=5).

Programs

  • Magma
    [EulerPhi(n^2-1)/2: n in [2..70]]; // Vincenzo Librandi, Sep 15 2018
  • Mathematica
    Table[(EulerPhi@(n^2 - 1) / 2), {n, 2, 70}] (* Vincenzo Librandi, Sep 15 2018 *)
  • PARI
    {a(n) = eulerphi(n^2-1)/2}
    

Formula

Sum_{k=1..n} a(k) = c * n^3 / 4 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024

A319214 a(n) = phi(n^5 - 1)/5 where phi is A000010.

Original entry on oeis.org

6, 22, 120, 280, 1240, 1120, 5400, 5280, 12960, 12880, 45240, 24752, 90240, 59160, 96000, 141984, 346880, 163800, 540000, 326720, 588984, 585120, 1523280, 582400, 1728000, 1203840, 2294712, 1758096, 4692408, 1388000, 6480000, 3787200, 5416800, 4783680, 7440000
Offset: 2

Views

Author

Seiichi Manyama, Sep 13 2018

Keywords

Crossrefs

Row 5 of A369291.
Cf. A000010, A258807 (n^5-1).
phi(n^b - 1)/b: A319210 (b=2), A319213 (b=3), this sequence (b=5).

Programs

  • Mathematica
    Table[EulerPhi[n^5-1]/5,{n,2,40}] (* Harvey P. Dale, Feb 09 2019 *)
  • PARI
    {a(n) = eulerphi(n^5-1)/5}

Formula

Sum_{k=1..n} a(k) = c * n^6 + O((n*log(n))^5), where c = (1/30) * Product_{p prime == 1 (mod 5)} (1 - 5/p^2) * Product_{p prime !== 1 (mod 5)} (1 - 1/p^2) = 0.019389107739... . - Amiram Eldar, Dec 09 2024

A373946 Number of primitive polynomials of third degree over GF(m) with vanishing quadratic term with m = m(n) = A000961(n), for n >= 2.

Original entry on oeis.org

1, 1, 0, 4, 3, 18, 8, 16, 18, 48, 48, 27, 80, 48, 108, 108, 72, 300, 144, 224, 180, 308, 192, 336, 560, 240, 648, 420, 576, 540, 648, 768, 1080, 1200, 912, 1360, 1008, 1352, 1188, 1584, 960, 2340, 1620, 4410, 2112, 2432, 1980, 2952, 1560, 2592, 2025, 4592, 2448, 4872, 4576
Offset: 2

Views

Author

Martin Becker, Jun 23 2024

Keywords

Comments

Apparently, a(n) = A373514(n) * A000010( 3 * A000961(n) - 3 ) * A025474(n) / 2, for n >= 2.

Examples

			For n=5, m=5, there are 20 primitive polynomials over GF(5) of the form x^3+a*x^2+b*x+c. Among these, 4 polynomials have a=0: x^3+3*x+2, x^3+3*x+3, x^3+4*x+2, and x^3+4*x+3. Thus, a(5) = 4.
		

Crossrefs

Programs

  • PARI
    is_max_o = (x1, x0, m, e)-> {
      for(i = 1, #e, if(x1^e[i] == x0, return(0))); x1^m == x0;
    }
    count_them = (q)-> {
      z = ffprimroot(ffgen(q, 'c));
      m = q^3 - 1; f = factor(m); d = #f~;
      e = vector(d, i, m/f[d + 1 - i, 1]);
      co = vector(q - 1, i, z^(i - 1));
      r = 0;
      for(a = 1, q - 1,
        for(b = 1, q - 1,
          p = co[1]*x^3 + co[a]*x + co[b];
          x1 = Mod(x, p); x0 = x1^0;
          if(is_max_o(x1, x0, m, e) && polisirreducible(p), r += 1)
        )
      );
      r;
    }
    print1(count_them(2));
    for(q = 3, 64, if(isprimepower(q), print1(", ", count_them(q))))
Showing 1-4 of 4 results.