A369291 Array read by antidiagonals: T(n,k) = phi(k^n-1)/n, where phi is Euler's totient function (A000010), n >= 1, k >= 2.
1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 12, 8, 6, 2, 12, 20, 32, 22, 6, 6, 8, 56, 48, 120, 48, 18, 4, 18, 36, 216, 280, 288, 156, 16, 6, 16, 144, 160, 1240, 720, 1512, 320, 48, 4, 30, 96, 432, 1120, 5040, 5580, 4096, 1008, 60, 10, 16, 216, 640, 5400, 6048, 31992, 14976, 15552, 2640, 176
Offset: 1
Examples
Array begins: n\k| 2 3 4 5 6 7 8 9 ... ---+--------------------------------------------------- 1 | 1 1 2 2 4 2 6 4 ... 2 | 1 2 4 4 12 8 18 16 ... 3 | 2 4 12 20 56 36 144 96 ... 4 | 2 8 32 48 216 160 432 640 ... 5 | 6 22 120 280 1240 1120 5400 5280 ... 6 | 6 48 288 720 5040 6048 23328 27648 ... 7 | 18 156 1512 5580 31992 37856 254016 340704 ... 8 | 16 320 4096 14976 139968 192000 829440 1966080 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
- Eric Weisstein's World of Mathematics, Totient Function.
- Wikipedia, Euler's totient function.
Crossrefs
Programs
-
Mathematica
A369291[n_, k_] := EulerPhi[k^n - 1]/n; Table[A369291[k, n-k+2], {n, 15}, {k, n}] (* Paolo Xausa, Jun 17 2024 *)
-
PARI
T(n,k) = eulerphi(k^n-1)/n
Comments