A339195
Triangle of squarefree numbers grouped by greatest prime factor, read by rows.
Original entry on oeis.org
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 66, 77, 110, 154, 165, 231, 330, 385, 462, 770, 1155, 2310, 13, 26, 39, 65, 78, 91, 130, 143, 182, 195, 273, 286, 390, 429, 455, 546, 715, 858, 910, 1001, 1365, 1430, 2002, 2145, 2730, 3003, 4290, 5005, 6006, 10010, 15015, 30030
Offset: 0
Triangle begins:
1
2
3 6
5 10 15 30
7 14 21 35 42 70 105 210
- Alois P. Heinz, Rows n = 0..14, flattened
- Michael De Vlieger, Plot p | a(n) at (x,y) = (n,pi(p)), n = 0..2047, 12X vertical exaggeration.
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2047, with a color function related to the order of a(n) in A019565.
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2047, with a color function showing 1 in gray, primes in red, primorials in bright green, even squarefree semiprimes in yellow, odd squarefree semiprimes in light green, thereafter, progressively deeper green related to omega(a(n)) = m until m >= 6.
A209862 takes prime indices to binary indices in these terms.
A246867 groups squarefree numbers by Heinz weight, with row sums
A147655.
A005117 lists squarefree numbers, ordered lexicographically by prime factors:
A019565.
A006881 lists squarefree semiprimes.
A072047 counts prime factors of squarefree numbers.
A319246 is the sum of prime indices of the n-th squarefree number.
-
T:= proc(n) option remember; `if`(n=0, 1, (p-> map(
x-> x*p, {seq(T(i), i=0..n-1)})[])(ithprime(n)))
end:
seq(T(n), n=0..6); # Alois P. Heinz, Jan 08 2025
-
Table[Prime[n]*Sort[Times@@Prime/@#&/@Subsets[Range[n-1]]],{n,5}]
A261144
Irregular triangle of numbers that are squarefree and smooth (row n contains squarefree p-smooth numbers, where p is the n-th prime).
Original entry on oeis.org
1, 2, 1, 2, 3, 6, 1, 2, 3, 5, 6, 10, 15, 30, 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210, 1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 21, 22, 30, 33, 35, 42, 55, 66, 70, 77, 105, 110, 154, 165, 210, 231, 330, 385, 462, 770, 1155, 2310, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 26, 30, 33, 35, 39, 42
Offset: 1
Triangle begins:
1, 2; squarefree and 2-smooth
1, 2, 3, 6; squarefree and 3-smooth
1, 2, 3, 5, 6, 10, 15, 30;
1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210;
...
Cf.
A000079 (2-smooth),
A003586 (3-smooth),
A051037 (5-smooth),
A002473 (7-smooth),
A018336 (7-smooth & squarefree),
A051038 (11-smooth),
A087005 (11-smooth & squarefree),
A080197 (13-smooth),
A087006 (13-smooth & squarefree),
A087007 (17-smooth & squarefree),
A087008 (19-smooth & squarefree).
Rightmost terms (or column k = 2^n) are
A002110.
Rows are partial unions of rows of
A019565.
A072047 counts prime factors of squarefree numbers.
-
b:= proc(n) option remember; `if`(n=0, [1],
sort(map(x-> [x, x*ithprime(n)][], b(n-1))))
end:
T:= n-> b(n)[]:
seq(T(n), n=1..7); # Alois P. Heinz, Nov 28 2015
-
primorial[n_] := Times @@ Prime[Range[n]]; row[n_] := Select[ Divisors[ primorial[n]], SquareFreeQ]; Table[row[n], {n, 1, 10}] // Flatten
A319247
Irregular triangle whose n-th row lists the strict integer partition whose Heinz number is the n-th squarefree number.
Original entry on oeis.org
1, 2, 3, 2, 1, 4, 3, 1, 5, 6, 4, 1, 3, 2, 7, 8, 4, 2, 5, 1, 9, 6, 1, 10, 3, 2, 1, 11, 5, 2, 7, 1, 4, 3, 12, 8, 1, 6, 2, 13, 4, 2, 1, 14, 9, 1, 15, 7, 2, 16, 5, 3, 8, 2, 10, 1, 17, 18, 11, 1, 6, 3, 5, 2, 1, 19, 9, 2, 4, 3, 1, 20, 21, 12, 1, 5, 4, 6, 2, 1, 22
Offset: 1
The sequence of strict partitions begins: (), (1), (2), (3), (2,1), (4), (3,1), (5), (6), (4,1), (3,2), (7), (8), (4,2), (5,1), (9), (6,1), (10), (3,2,1), (11), (5,2), (7,1), (4,3), (12), (8,1), (6,2), (13), (4,2,1).
-
Table[If[n==1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,Select[Range[100],SquareFreeQ]}]
A329631
Irregular triangle read by rows where row n lists the prime indices of the n-th squarefree number.
Original entry on oeis.org
1, 2, 3, 1, 2, 4, 1, 3, 5, 6, 1, 4, 2, 3, 7, 8, 2, 4, 1, 5, 9, 1, 6, 10, 1, 2, 3, 11, 2, 5, 1, 7, 3, 4, 12, 1, 8, 2, 6, 13, 1, 2, 4, 14, 1, 9, 15, 2, 7, 16, 3, 5, 2, 8, 1, 10, 17, 18, 1, 11, 3, 6, 1, 2, 5, 19, 2, 9, 1, 3, 4, 20, 21, 1, 12, 4, 5, 1, 2, 6
Offset: 1
Triangle begins:
1: {} 33: {2,5} 66: {1,2,5} 97: {25}
2: {1} 34: {1,7} 67: {19} 101: {26}
3: {2} 35: {3,4} 69: {2,9} 102: {1,2,7}
5: {3} 37: {12} 70: {1,3,4} 103: {27}
6: {1,2} 38: {1,8} 71: {20} 105: {2,3,4}
7: {4} 39: {2,6} 73: {21} 106: {1,16}
10: {1,3} 41: {13} 74: {1,12} 107: {28}
11: {5} 42: {1,2,4} 77: {4,5} 109: {29}
13: {6} 43: {14} 78: {1,2,6} 110: {1,3,5}
14: {1,4} 46: {1,9} 79: {22} 111: {2,12}
15: {2,3} 47: {15} 82: {1,13} 113: {30}
17: {7} 51: {2,7} 83: {23} 114: {1,2,8}
19: {8} 53: {16} 85: {3,7} 115: {3,9}
21: {2,4} 55: {3,5} 86: {1,14} 118: {1,17}
22: {1,5} 57: {2,8} 87: {2,10} 119: {4,7}
23: {9} 58: {1,10} 89: {24} 122: {1,18}
26: {1,6} 59: {17} 91: {4,6} 123: {2,13}
29: {10} 61: {18} 93: {2,11} 127: {31}
30: {1,2,3} 62: {1,11} 94: {1,15} 129: {2,14}
31: {11} 65: {3,6} 95: {3,8} 130: {1,3,6}
Same as
A319247 with rows reversed.
Looking at all numbers instead of just squarefree numbers gives
A112798.
-
Table[PrimePi/@First/@If[k==1,{},FactorInteger[k]],{k,Select[Range[30],SquareFreeQ]}]
A111059
a(n) = Product_{k=1..n} A005117(k), the product of the first n squarefree positive integers.
Original entry on oeis.org
1, 2, 6, 30, 180, 1260, 12600, 138600, 1801800, 25225200, 378378000, 6432426000, 122216094000, 2566537974000, 56463835428000, 1298668214844000, 33765373585944000, 979195833992376000, 29375875019771280000
Offset: 1
Since the first 6 squarefree positive integers are 1, 2, 3, 5, 6, 7, the 6th term of the sequence is 1*2*3*5*6*7 = 1260.
From _Gus Wiseman_, May 14 2021: (Start)
The sequence of terms together with their prime signatures begins:
1: ()
2: (1)
6: (1,1)
30: (1,1,1)
180: (2,2,1)
1260: (2,2,1,1)
12600: (3,2,2,1)
138600: (3,2,2,1,1)
1801800: (3,2,2,1,1,1)
25225200: (4,2,2,2,1,1)
378378000: (4,3,3,2,1,1)
6432426000: (4,3,3,2,1,1,1)
122216094000: (4,3,3,2,1,1,1,1)
(End)
A006881 lists squarefree semiprimes.
A072047 applies Omega to each squarefree number.
A246867 groups squarefree numbers by Heinz weight (row sums:
A147655).
A319246 gives the sum of prime indices of each squarefree number.
A329631 lists prime indices of squarefree numbers (reversed:
A319247).
-
Rest[FoldList[Times,1,Select[Range[40],SquareFreeQ]]] (* Harvey P. Dale, Jun 14 2011 *)
-
m=30;k=1;for(n=1,m,if(issquarefree(n),print1(k=k*n,",")))
A339360
Sum of all squarefree numbers with greatest prime factor prime(n).
Original entry on oeis.org
1, 2, 9, 60, 504, 6336, 89856, 1645056, 33094656, 801239040, 24246190080, 777550233600, 29697402470400, 1250501433753600, 55083063155097600, 2649111037319577600, 143390180403000115200, 8619643674791667302400, 534710099148093259776000, 36412881178052121329664000
Offset: 0
The initial terms are:
1 = 1,
2 = 2,
9 = 3 + 6,
60 = 5 + 10 + 15 + 30.
A010036 takes prime indices here to binary indices, row sums of
A209862.
A048672 takes prime indices to binary indices in squarefree numbers.
A072047 counts prime factors of squarefree numbers.
A006881 lists squarefree semiprimes.
A056239 is the sum of prime indices of n (Heinz weight).
A319246 is the sum of prime indices of the n-th squarefree number.
A319247 lists reversed prime indices of squarefree numbers.
A329631 lists prime indices of squarefree numbers.
-
f:= proc(n) local i;
`if`(n=0, 1, ithprime(n)) *mul(1+ithprime(i),i=1..n-1)
end proc:
map(f, [$0..20]); # Robert Israel, Dec 08 2020
-
Table[Sum[Times@@Prime/@stn,{stn,Select[Subsets[Range[n]],MemberQ[#,n]&]}],{n,10}]
Showing 1-6 of 6 results.
Comments