A319386 Semiprimes k = pq with primes p < q such that p-1 does not divide q-1.
35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 473, 493, 497, 515, 517, 527, 533, 535, 551, 559, 581, 583, 589, 611, 623, 629, 635, 649, 655, 667, 689, 695, 697, 707, 713, 731
Offset: 1
Keywords
Examples
35 = 5*7 is a term since 5-1 does not divide 7-1. 35 is a term since lpf(35)-1 = 5-1 does not divide 35-1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # for terms <= N P:= select(isprime,{seq(i,i=5..N/5,2)}): S:= {}: for p in P do Qs:= select(q -> q > p and q <= N/p and (q-1 mod (p-1) <> 0), P); S:= S union map(`*`,Qs,p); od: sort(convert(S,list)); # Robert Israel, Apr 14 2020
-
Mathematica
spndQ[n_]:=Module[{fi=FactorInteger[n][[All,1]]},PrimeOmega[n]==2 && Length[ fi]==2&&Mod[fi[[2]]-1,fi[[1]]-1]!=0]; Select[Range[800],spndQ] (* Harvey P. Dale, Jun 06 2021 *)
-
PARI
isok(n) = {if ((bigomega(n) == 2) && (omega(n) == 2), my(p = factor(n)[1, 1], q = factor(n)[2, 1]); (q-1) % (p-1) != 0;);} \\ Michel Marcus, Sep 18 2018
-
PARI
list(lim)=my(v=List(),s=sqrtint(lim\=1)); forprime(q=7,lim\5, forprime(p=5,min(min(q-2,s),lim\q), if((q-1)%(p-1), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Apr 14 2020
Comments