cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319390 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), a(0)=1, a(1)=2, a(2)=3, a(3)=6, a(4)=8.

Original entry on oeis.org

1, 2, 3, 6, 8, 13, 16, 23, 27, 36, 41, 52, 58, 71, 78, 93, 101, 118, 127, 146, 156, 177, 188, 211, 223, 248, 261, 288, 302, 331, 346, 377, 393, 426, 443, 478, 496, 533, 552, 591, 611, 652, 673, 716, 738, 783, 806, 853, 877, 926, 951, 1002
Offset: 0

Views

Author

Paul Curtz, Sep 18 2018

Keywords

Comments

The bisections A104249(n) = 1, 3, 8, ... and A143689(n+1) = 2, 6, 13, 23, ... are in the following hexagonal spiral:
29--28--28--27--27
/ \
29 17--17--16--16 26
/ / \ \
30 18 9---8---8 15 26
/ / / \ \ \
30 18 9 3---3 7 15 25
/ / / / \ \ \ \
31 19 10 4 1 2 7 14 25
/ / / / / / / /
19 10 4 1---2 6 14 24
\ \ \ / / /
20 11 5---5---6 13 24
\ \ / /
20 11--12--12--13 23
\ /
21--21--22--22--23
.
a(n) mod 9 = A140265(n) mod 9.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{1,2,3,6,8},100] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    Vec((1 + x - x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jun 05 2019

Formula

a(2n) = (3*n^2 + n + 2)/2. a(2n+1) = (3*n^2 + 5*n + 4)/2.
a(-n) = a(n).
a(n) = a(n-1) + A026741(n).
G.f.: (1 + x - x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2). - Colin Barker, Jun 05 2019
a(n) = 1 + A001318(n). - Peter Bala, Feb 04 2021
E.g.f.: ((8 + 7*x + 3*x^2)*cosh(x) + (9 + 5*x + 3*x^2)*sinh(x))/8. - Stefano Spezia, Feb 05 2021